
SERVICE LIFE EVALUATION OF CORRUGATED STEEL PIPE

Storm Water Detention Systems in the Metropolitan Washington, DC Area

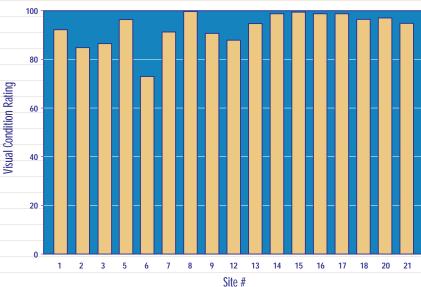
NATIONAL CORRUGATED STEEL PIPE

Document of External Origin, SH, 10/3/1

ASSOCIATION

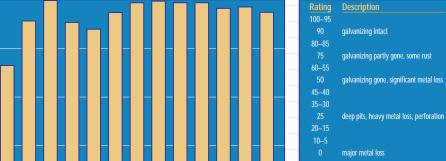
SERVICE LIFE EVALUATION OF CORRUGATED STEEL PIPE

INTRODUCTION


Corrugated steel pipe (CSP) storm water detention systems (plain galvanized, aluminized, or bituminous coated) have been in use in the metropolitan Washington, DC area since the early 1970s. A qualitative condition survey to assess the overall performance of 17 of these systems was conducted by Parsons Brinkerhoff of Baltimore, MD on behalf of the National Corrugated Steel Pipe Association (NCSPA) in early 1998. The overall conclusion of the survey¹ was that the systems were performing extremely well. Figure 1 shows the

average condition rating (crown, sides, invert) based on a visual rating scale developed by Corrpro, 1991.² Most systems still had the zinc layer intact after about 25 years of service. There were no signs of visible deflection and most joints appeared to be soil tight. In May of 2000 the NCSPA retained Corrpro Companies Inc. to perform a more detailed and quantitative evaluation of the corrugated steel pipe storm water detention systems evaluated previously. This work includes determining coating or metal loss and using available methodology to predict service life. This report presents the findings of the study

undertaken by Corrpro.


EVALUATION PROCEDURES

Fifteen of the 17 sites were selected for evaluation. Sites 15 and 20 are sand filter systems and were not evaluated because access to the invert would require removal of sand filter media. During the field inspection it was found that one of the systems (Site No. 12) had been removed during redevelopment. In addition, it was not possible to gain access to two of the systems, sites 1 and 18. Thus testing was per-

¹ "Condition Survey of Corrugated Steel Pipe Detention Systems," NCSPA, Washington, DC, March 1999. ² "Condition and Corrosion Survey: Soil Side Durability of CSP," Corrpro Companies, March 1991.

Table 1. Stormwater Detention System Overview									
Site No.	Location	Pipe Diameter (inches)	Coating	Corrugation	Pipe Age (years)	Soil Depth to Top of Pipe (feet)	Sa Soil	Number of mples Collec Water	
		(mones)			Geursy		3011	water	coupons
2	Industrial, Montgomery County, MD	48	Galvanized	1x3" Helical	26	2	2	2	3
3	Industrial, Montgomery County, MD	48	Galvanized	1x5" Helical	26	4.25	1	2	2
5	Industrial, Montgomery County, MD	60	Galvanized	1x5" Helical	21	4	2	2	2
6	Commercial, Montgomery County, MD	96	Galvanized	1x5" Helical	21	4	2	2	2
7	Commercial, Montgomery County, MD	96	Galvanized	1x5" Helical	21	2	2	2	2
8	Commercial, Montgomery County, MD	72	Fully Bituminous Coated	1x5" Helical	21	2.5	2	1	2
9	Commercial, Montgomery County, MD	72	Galvanized	1x5" Helical	21	13	1	1	2
13	Commercial, Montgomery County, MD	108	Aluminum Coated Type 2	1x5" Helical	11	6	2	1	2
14	Residential, Fairfax County, VA	67x104	Fully Bituminous Coated	1x5" Helical	6	6	2	2	2
16	Residential, Fairfax City, VA	80	Aluminum Coated Type 2	1x5" Helical	11	11	1	2	2
17	Residential, Fairfax City, VA	65x107	Fully Bituminous Coated	1x5" Helical	6	12	1	2	2
21	Residential, Alexandria, VA	144	Galvanized	1x5" Helical	6	6	1	2	2

formed on 12 sites. Table 1 presents an overview of	coupons (1½ inch in diameter) were obtained from the	Laboratory Work Samples collected from the field
each site including the numbering, location, land use,	top and invert at each location for subsequent determi-	testing were evaluated in the laboratory. Corrugated
system size, age, and sampling performed at each of	nation of the remaining zinc layer thickness. A total of	steel pipe coupons were polished metallographically
the sites.	25 coupons were collected. Soil and water samples were	along their thickness to reveal the zinc layer. The zinc
Field Testing Field-testing consisted of performing	also collected from each site for laboratory analysis.	layer thickness was measured at ten locations with the
visual observations, in-situ measurements of soil resis-	Wherever possible, photographic documentation of	help of a low-powered optical microscope and an
tivity, soil pH, and redox potential at each site. Disk	the detention systems was made.	average thickness was calculated. Soil samples were

		Soil Resis	Soil Resistivity*		Potential, mV vs. CSE**			рН	
Site No.	Location	Bottom	Тор	Bottom	Тор	Surface	Bottom	Тор	
Galvanized	l Systems								
2	Industrial, Montgomery County, MD	4000	7000	-681	-637	-508	6.85	6.74	
3	Industrial, Montgomery County, MD	4000	4000	-562	-620	-549	NM	NM	
5	Industrial, Montgomery County, MD	6500	11000	-644	-694	-633	NM	8.14	
6	Commercial, Montgomery County, MD	13000	6000	-786	-740	-689	6.85	6.83	
7	Commercial, Montgomery County, MD	20000	3300	-741	-546	-722	7.24	7.86	
9	Commercial, Montgomery County, MD	50000	NM	-641	-690	-724	NM	7.38	
21	Residential, Alexandria, VA	NM	1900	-629	-706	-671	6.27	6.49	
Fully Bitun	ninous Coated Systems								
8	Commercial, Montgomery County, MD	20000	2000	-938	-721	-946	NM	NM	
14	Residential, Fairfax County, VA	11000	7100	-973	-481	-955	7.14	8.67	
17	Residential, Fairfax City, VA	15000	6000	-926	-946	-933	7.16	6.8	
Aluminum	Coated Type 2 Systems								
13	Commercial, Montgomery County, MD	10000	5500	-664	-672	-425	10.4	10.1	
16	Residential, Fairfax City, VA	NM	28000	-617	-665	-613	7.81	8.01	
*Soil resistivity determined with a Collins Rod									

NM - Not Measured

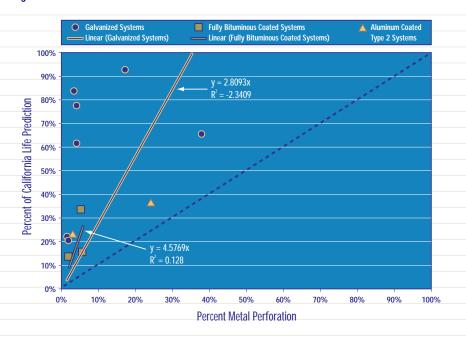
evaluated to identify the soil type and physical char-	The procedures used by Potter in FHWA-	ANALYSIS AND DISCUSSION
acteristics, determine resistivity, pH, moisture content,	FLP-91-006.	Table 3 summarizes the laboratory analysis data
chlorides and sulfides. Water samples were evaluated		for the soil samples. These parameters were utilized to
to determine pH, resistivity, chlorides, and sulfides.	FINDINGS	calculate the remaining life of the galvanized layer
Utilizing the soil and water analysis data, the pre-	Field Tests Table 2 summarizes the results of the	using the software program previously developed by
dicted service life of the detention system was calcu-	soil resistivity, pH and potential measurements made	Corrpro for NCSPA ² . That study of culvert and storm
lated using a variety of methods:	at each site. Over 80% of the potential readings were	sewer installations concluded indicated that "93.2% of
 Software previously developed by Corrpro 	found to be in the range of -617 mV to -946 mV	the plain galvanized installations have a soil side serv-
Companies ² for the NCSPA.	with respect to a copper-copper sulfate electrode.	ice life in excess of 75 years, while 81.5% have a soil
 California Method for Estimating Years to 	Potential readings in this range indicate that the gal-	side service life in excess of 100 years."
Perforation of Steel Culverts	vanized layer has not corroded away and exposed	The software generates service life predictions
AISI Method for Service Life Prediction	the bare steel.	from a statistical model developed to accurately pre-

1	Table 3. Laboratory Soil Analysis Data and Soil Side Life Prediction*											
		Sample			Moisture		Chlorid e	Sulfide	Resistivity	16 gage galvanized	Gage	Predicted
_	Site No.	Location	Soil Type	Sample Color	(%)	рН	(ppm)	(ppm)	(ohm-cm)	pipe life (yrs)*	Multiplier	Pipe Life
_	Galvanize	d Systems										
	2	Тор	sandy clay	gray	23.72	7.4	16	0.3	722	91.5	1.0	91.5
		Invert	loam	gray-brown	27.32	7.7	60	0	1684	70.9	1.0	70.9
	3	Тор	clay	gray	29.14	7.9	32	0	2538	100.11.0	1.0	100.1
	5	Тор	silty loam	gray-brown	23.83	7.9	20	0	8696	141.4	1.3	183.8
		Invert	clay	gray-brown	26.51	7.4	27	0	3663	91.7	1.3	119.2
	6	Тор	silty clay	light red brown	27.52	6.4	37	0	4630	57.4	1.3	74.6
		Invert	silty clay	light red brown	29.18	6.8	28	0.3	5051	67.7	1.3	88.0
	7	Тор	silty clay loam	light red brown	23.67	6.3	42	0	2941	50.4	1.3	65.5
		Invert	silty clay loam	light red brown	30.21	6.6	9	0	11765	122.9	1.3	159.8
	9	Invert	clay	gray-red brown	34.00	7.6	10	0	2899	139.7	2.3	321.3
	21	Тор	silty clay	light red gray	24.17	6.0	34	0	1992	45.4	1.8	81.7
	Fully Bitu	minous Coa	ted Systems									
	8	Тор	silty clay loam	yellow gray	25.58	7.7	32	0	2899	94.9	1.3	123.4
		Invert	silty clay loam	yellow gray	27.48	7.6	30	0	3846	96.8	1.3	125.8
	14	Side	silty clay loam	light gray brown	23.07	5.7	10	0	7813	79.9	1.8	143.8
		Invert	caliche	light gray brown	32.38	6.6	10	0	10417	115.9	1.8	208.6
	17	Invert	silty clay	light red brown	27.95	5.1	12	0	6993	59.3	1.8	106.7
	Aluminum	Coated Typ	e 2 Systems									
	13	Side	silty clay	light red brown	26.73	6.6	30	0	1961	60.6	2.3	139.4
		Invert	silty clay	light red brown	34.33	7.2	18	0	3745	100.1	2.3	230.2
	16	Тор	silty loam	light gray brown	20.40	4.9	16	0	10417	54.0	1.3	70.2
	*Sorvico lifo	for 16 gage g	alvanizod nino usir	na software previous	ly developed	by Corroro Con	nanios Inc for	NCSDA				

*Service life for 16 gage galvanized pipe using software previously developed by Corrpro Companies, Inc for NCSPA

3

dict service life of galvanized CSP for sites where	"When the galvanized coating reaches the point	model was 16 gage. Therefore the model does not
durability is limited by soil side corrosion. The model	that pitting of the steel substrate could begin, the	accommodate added life projections due to the
predicts the condition of the protective galvanized	model uses black steel corrosion data from 23,000	increased thickness of the pipe wall. Use of this data
coating over time plus the life of 16 gage black steel.	black steel underground storage tank sites to analyze	induces significant conservatism also, because, it is
According to the author:	overall durability vs. time. The black steel used in the	based on steel not previously galvanized, and there-


Site No.	Sample Location	рН	Resistivity (ohm-cm)	Gage	California Pred. Life (yrs)	AISI Pred. Life (yrs)	Minimum California	Minimum AISI
Galvanized	l Systems							
2	Crown Soil	7.4	722	16	28	57		57
	Invert Soil	7.7	1684		40	80	28	
	Water*	5.5	613		5	10		
3	Crown Soil	7.9	2538	16	48	95	31	62
	Water**	7.5	881		31	62		
5	Crown Soil	7.9	8696	14	97	205	34	73
	Invert Soil	7.4	3663		68	144		
	Water	7.4	692		34	73		
6	Crown Soil	6.4	4630	14	33	69	32	67
	Invert Soil	6.8	5051		39	82		
	Water	6.2	5181		32	67		
7	Crown Soil	6.3	2941	14	27	58	27	58
	Invert Soil	6.6	11765		44	93		
	Water	7.3	3165		55	116		
9	Invert Soil	7.6	2899	10	108	231	94	201
	Water	7.9	2066		94	201		
21	Crown Soil	6.0	1992	12	29	61	29	61
	Water	6.2	8333		50	106		
Fully Bitun	ninous Coated S	Systems						
8	Crown Soil	7.7	2899	14	62	130	62	130
	Invert Soil	7.6	3846		69	147		
	Water	7.6	3135		64	135		
14	Side Soil	5.7	7813	12	44	94	44	94
	Invert Soil	6.6	10417		59	125		
	Water	6.9	4184		54	114		
17	Invert Soil	5.1	6993	12	38	80	38	80
	Water	6.6	12195		61	130		
	Coated Type 2	Systems						
13	Side Soil	6.6	1961	10	47	100	47	100
	Invert Soil	7.2	3745		84	179		
	Water	7.3	4016		100	214		
16	Crown Soil	4.9	10417	14	30	64	30	64
	Water	6.8	5814		40	85		

Notes: 1. The above resistivity and pH data was obtained from laboratory analysis of field samples. 2. All predictions are for galvanized pipe of the designated gage. No multiplier or "add-on" for additional coating has been used *This water smelled of antifreeze. It was considered an aberrant condition for service life prediction.

**This "water" was saturated organic matter.

fore, does not recognize the effects of residual galva-	years. The minimum predicted service life for any of	water). The minimum of the calculated values for each
nizing and the alloy layer formed during the galva-	the systems is 65 years. Taking all of the above fac-	pipe is then identified in the table. Notice that systems
nizing in slowing the corrosion process. Additionally,	tors into consideration, the total service life of the	2, 3, and 7 are very near the end of the California
the slowing of the corrosion pitting rate with time for	structures would be in excess of 100 years.	Method predicted service life (first perforation). Yet the
thicker gages cannot be accommodated. However,	Table 4 shows the predicted service life of each	systems are all in quite good condition, with most of
these shortcomings add conservatism to the service	detention system using both the California and AISI	the galvanized coating still in tact. There would cer-
life estimates."	methods. The California Method was developed by	tainly need to be extreme corrosion to occur if they are
The calculations show the average predicted life of	Stratful to predict time to fist perforation, which is not	to have penetrations at the age predicted by the
a 16 gage galvanized pipe in these environments is	considered the end of service life. The AISI Method	California Method. This suggests that the AISI Method
about 86 years. Table 3 also attempts to adjust the	(also developed by Stratful) is based on the Caltrans	provides a more accurate service life prediction than
service life prediction by using a gage multiplier as	Method but is used to predict average invert service	the California Method for detention systems, however
recommended by the AISI Method. This shows that the	life. $^{3}\ensuremath{\mbox{For}}$ each method, the service life was calculated	both methods provide very conservative predictions
average predicted life of the systems is about 130	using each of the environmental samples (soil and	for these environments.

Figure 2. Percent Metal Perforation vs. California Prediction

³ "Durability of CSP," Richard Stratful, Corrosion Engineering, Inc., 1986.

4 Durability of Special Coatings for Corrugated Steel Pipe, J.C. Potter, I Lewandowski, and D.W. White, Federal Highway Administration, Report No. FHWA-FLP-91-006, June 1991.

Table 5. Service Life Analysis Using the Technique Developed by Potter							
	Thickness	s (inches)			Actua	I Age	
			Percent	Min. Calif.		Percent of	
Site No.	Original (est)	Min	Perforation	Pred. Years*	Years	Calif. Pred.	
Galvanize	d Systems						
2	0.058	0.048	17.2%	28	26	92.9%	
3	0.058	0.056	3.4%	31	26	83.9%	
5	0.072	0.069	4.2%	34	21	61.8%	
6	0.071	0.044	38.0%	32	21	65.6%	
7	0.071	0.068	4.2%	27	21	77.8%	
9	0.128	0.126	1.6%	94	21	22.3%	
21	0.099	0.097	2.0%	29	6	20.7%	
Fully Bitur	ninous Coated S	Systems					
8	0.075	0.071	5.3%	62	21	33.9%	
14	0.098	0.096	2.0%	44	6	13.6%	
17	0.105	0.099	5.7%	38	6	15.8%	
Aluminum	Coated Type 2	Systems					
13	0.124	0.120	3.2%	47	11	23.4%	
16	0.070	0.053	24.3%	30	11	36.7%	
*Data from Ta	ble 4 of this report						

To better understand the relationship between the California Method predictions and existing conditions, Potter correlated percent penetration with percent of California predicted service life expended.⁴ While there has been extensive debate over the validity of the technique, it is used as another method to compare service life predictions. Table 5 presents the minimum thickness measured on coupons from each system. That value is compared with the "original" thickness. The original thickness was determined in most cases by measuring overall thickness on the

crown of the pipe where the galvanizing was metallographically determined to be in-tact at nominally the original thickness. System 6 was the only system where an original thickness was difficult to determine, but a sufficiently conservative estimate was made based on measurements of the coupons. Figure 2 shows the data plotted in a manner similar to that used by Potter. Best-fit lines were regressed through all of the data for galvanized and asphalt coated pipes. No plot was made for aluminum coated pipes due to a lack of sufficient number of data points.

Using all data points, the analysis suggests that the galvanized systems are performing 2.8 times as well as the California Method would predict while the fully bituminous coated systems are performing 4.6 times as well as the California Method would predict for galvanized material. It should be noted that this multiplier increases to 7.3 times for galvanized systems if Site #6 is ignored. The inspection of the systems support the conclusion that the galvanized detention systems will last more than twice as long as the California Method might predict.

CONCLUSIONS

- Corrugated steel pipe storm detention Systems (galvanized, aluminized, or bituminous coated) are performing satisfactorily in service.
- The service life of detention systems appears to be driven by soil-side corrosion.
- 3. There is no significant water-side invert deterioration. As a result, it is expected that the service life would be longer for detention systems than for culverts or storm sewers. This may be due in part to an absence of abrasion in the invert of detention systems.
- The AISI Method appears more realistic in terms of predicting Detention System Service Life than the California Method, though both will provide conservative service life predictions for most environments.
 Visual observations and measurements of remaining galvanized layer thickness on coupons are in concurrence with theoretical calculations using previously developed software for remaining life prediction.
- the analytical approach presented herein support
 the prediction of a functional service life for
 these galvanized detention systems in excess of
 100 years.
 7. Corrugated steel pipe manufacturers provide a
 range of coatings and material thicknesses that
 make it possible to design a detentions system in
 practically any environment that will last in
 excess of 100 years where corrosion is the life

limiting factor.

6. Physical inspection of these systems along with

SITE 2: 48" Detention System, Montgomery County

INVERT: SOIL SIDE

INVERT: "SAW CUT" SOIL SIDE

INVERT: "SAW CUT" WATER SIDE

Water Data					
рH		5.5			
Chloride, ppm		139			
Sulfide, ppm		0			
Resistivity, ohm-	:m	613			
Soil Data					
Moisture %	23.72	27.32%			
рН	7.4	7.7			
Chloride, ppm	16	60			
Sulfide, ppm	0.3	0			
Resistivity, ohm-	cm 722	1,684			
General Informa	tion				
Age of Inspectior	1:	26 years			
Coating Type:		galvanized			
Diameter:		48"			
Corrugation:		1x5" helical			
Land Use:		industrial			
Location:	Montgomery County, Md.				

SITE 3: 48" Detention/Infiltration System, Montgomery County

Water Data	
рH	7.5
Chloride, ppm	66
Sulfide, ppm	0.3
Resistivity, ohm-	cm 881
Soil Data	
Moisture %	29.14%
рН	7.9
Chloride, ppm	32
Sulfide, ppm	0
Resistivity, ohm-	cm 2,538
General Informa	ition
Age of Inspection	n: 26 years
Coating Type:	galvanized
Diameter:	48"
Corrugation:	1x5" helical
Land Use:	industrial
Location:	Montgomery County, Md.

CROWN: SOIL SIDE

CROWN: WATER SIDI

INVERT: "SAW CUT" SOIL SIDE

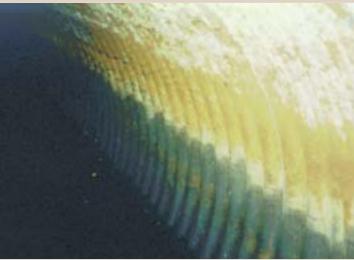
NVERT: "SAW CUT" WATER SID

9

SITE 5: 60" Detention System, Montgomery County

CROWN: SOIL SIDE

CROWN: WATER SIDE



Water Data		
рH		7.4
Chloride, ppm		193
Sulfide, ppm		0
Resistivity, ohm-	cm	692
Soil Data		
Moisture %	23.83	26.51%
рH	7.4	7.4
Chloride, ppm	20	27
Sulfide, ppm	0	0
Resistivity, ohm-	cm 8,696	3,663
General Informa	ition	
Age of Inspection	า:	21 years
Coating Type:		galvanized
Diameter:		60"
Corrugation:	1	x5" helical
Land Use:		industrial
Location:	Montgomery C	ounty, Md.

SITE 6: 96" Detention System, Montgomery County

Water Data		
рН		6.2
Chloride, ppm		16
Sulfide, ppm		0
Resistivity, ohm-	m	5,181
Soil Data		
Moisture %	27.52%	29.18%
рН	6.4	6.8
Chloride, ppm	37	28
Sulfide, ppm	0	0.3
Resistivity, ohm-	cm 4,630	5,051
General Informa	tion	
Age of Inspection	1:	21 years
Coating Type:		galvanized
Diameter:		96"
Corrugation:		1x5" helical
Land Use:		commercial
Location:	Montgomery (County, Md.

INVERT: SOIL SIDE

SITE 7: 96" Detention System, Montgomery County

CROWN: SOIL SIDE

CROWN: WATER SIDE

INVERT: SOIL SIDE

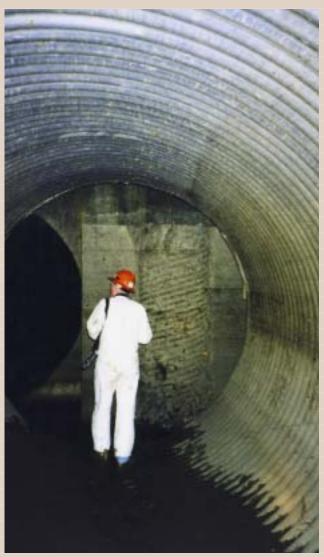
Water Data		
pН		7.3
Chloride, ppm		14
Sulfide, ppm		0
Resistivity, ohm	-cm	3,165
Soil Data		
Moisture %	23.67	30.21%
рН	6.3	6.6
Chloride, ppm	42	9
Sulfide, ppm	0	0
Resistivity, ohm	-cm 2,941	11,765
General Inform	ation	
Age of Inspection	n:	21 years
Coating Type:		galvanized
Diameter:		96"
Corrugation:	1	x5" helical
Land Use:	(commercial
Location:	Montgomery (County, Md.

SITE 8: 72" Detention System, Montgomery County

Water Data			
рH			7.6
Chloride, ppm			40
Sulfide, ppm			0
Resistivity, ohm-	cm		3,135
Soil Data			
Moisture %	25.	58	27.48%
pН	7	.7	7.6
Chloride, ppm		32	30
Sulfide, ppm		0	0
Resistivity, ohm-	cm 2,8'	99	3,846
General Information			
Age of Inspection	n:		21 years
Coating Type: fully bituminous coated			
Diameter:			72"
Corrugation:		1)	5" helical
Land Use:			industrial
Location:	Montgome	ry Co	ounty, Md.

CROWN: SOIL SIDE

ROWN: WATER SID


INVERT: SOIL SIDE

SITE 9: 108" Detention System, Montgomery County

Water Data	
рН	7.9
Chloride, ppm	34
Sulfide, ppm	0
Resistivity, ohm-	-cm 2,066
Soil Data	
Moisture %	34.00%
рН	7.6
Chloride, ppm	10
Sulfide, ppm	0
Resistivity, ohm-	-cm 2,899
General Information	ation
Age of Inspectio	n: 21 years
Coating Type:	galvanized
Diameter:	108"
Corrugation:	1x5" helical
Land Use:	commercial
Location:	Montgomery County, Md.

SIDE: SOIL SIDE

SIDE: WATER SIDE

INVERT: SOIL SIDE

SITE 13: 108" Detention System, Montgomery County

Water Data		
рН		7.3
Chloride, ppm		7
Sulfide, ppm		0
Resistivity, ohm-	cm	4,016
Soil Data		
Moisture %	26.73	34.33%
рН	6.6	7.2
Chloride, ppm	30	18
Sulfide, ppm	0	0
Resistivity, ohm-	cm 1,961	3,745
General Informa	ition	
Age of Inspection	n:	11 years
Coating Type:	aluminum co	oated type 2
Diameter:		108"
Corrugation:		1x5" helical
Land Use:		commercial
Location:	Montgomery	County, Md.

SIDE: SOIL SIDE

SITE 14: 67"x104" Detention System, Fairfax City

SIDE: SOIL SIDE

SIDE: WATER SIDE

INVERT: SOIL SIDE

Water Data		
рН		6.9
Chloride, ppm		32
Sulfide, ppm		0
Resistivity, ohm-cm		4,184
Soil Data		
Moisture %	23.07	32.38%
рН	5.7	6.6
Chloride, ppm	10	10
Sulfide, ppm	0	0
Resistivity, ohm-cm	7,813	10,417
General Information		
Age of Inspection:		6 years
Coating Type: full	y bitumino	ous coated
Diameter:		67"x104"
Corrugation:	1:	k5" helical
Land Use:		residential
Location:	Fairfa	x City, Va.

SITE 16: 80" Detention System, Fairfax City

Water Data	
рН	6.8
Chloride, ppm	133
Sulfide, ppm	0
Resistivity, ohm-cm	5,814
Soil Data	
Moisture %	20.40%
рН	4.9
Chloride, ppm	16
Sulfide, ppm	0
Resistivity, ohm-cm	10,417
General Information	
Age of Inspection:	11 years
Coating Type: alum	inum coated type 2
Diameter:	80"
Corrugation:	1x5" helical
Land Use:	residential (SFH)
Location:	Fairfax City, Va.

CROWN: SOIL SIDE

SITE 17: 65"x107" Detention System, Fairfax City

SIDE: SOIL SIDE

SIDE: WATER SIDE

SITE 21: 72" Detention System, Alexandria

Water Data	
рH	6.
Chloride, ppm	12
Sulfide, ppm	
Resistivity, ohm-cm	8,33
Soil Data	
Moisture %	24.17
рН	6.
Chloride, ppm	3
Sulfide, ppm	
Resistivity, ohm-cm	1,99
General Information	
Age of Inspection:	6 yea
Coating Type:	galvanize
Diameter:	72
Corrugation:	1x5" helic
Land Use:	residenti
Location:	Alexandria, V

CROWN: SOIL SIDE

ROWN: WATER SIDI

INVERT: SOIL SIDE

American Iron and Steel Institute 1101 17th Street, NW, Suite 1300 Washington, DC 20036-4700 www.steel.org/infrastructure