

INTRODUCTION

The application of corrugated steel pipe to the solution of various drainage problems has been described and illustrated in Chapter 1. These products are applicable to a wide segment of the construction industry, including highways, railways, streets, urban areas, airports, industrial and commercial development, flood control and conservation.

The steel products presented in this CSP Design Manual may be available at locations around the world, but not all products are fabricated in the USA. The NCSPA prepared this manual with full knowledge that highway projects funded by the FHWA require inclusion of the "Buy America" clause in the contract documents and the use of US-Made steel in the project. For FHWA funded projects, designers and specifiers should verify the origin and availability of CSP products through contact with local corrugated steel pipe and plate fabricators.

NCSPA does not accept responsibility for the designer's selection of material for drainage applications, but encourages the designer to evaluate the numerous corrugated steel products that meet the requirements of their project. It is suggested that the designer check the NCSPA website at www.NCSPA.org for additional technical guidance related to the selection of drainage pipe and structures.

The examples presented in this design manual are not all-inclusive or complete solutions, they are intended only to show the adaptability and wide acceptance of one material—corrugated steel—in providing the solution to some of the problems facing the design engineer.

So vast are the annual expenditures for construction, that the skills of resourceful qualified engineers are required to research (analyze), select, design and apply the available materials and products that most economically serve their purpose. Mass transportation, anti-pollution facilities, flood protection and other related construction, conceivably can require drainage facilities in comparable measure. The need for carefully considering the economics of providing and maintaining these facilities is obvious.

DESIGN FACTORS

Drainage design begins with reconnaissance and location surveys. The services of experienced soils and drainage engineers are the best assurance of economical construction and subsequent minimum maintenance.

The following design factors must be considered:

1. Size, shape, alignment, grade and other pipe details depend on hydrology, hydraulics, site conditions and service requirements. (See Chapters 3, 4 and 5.)

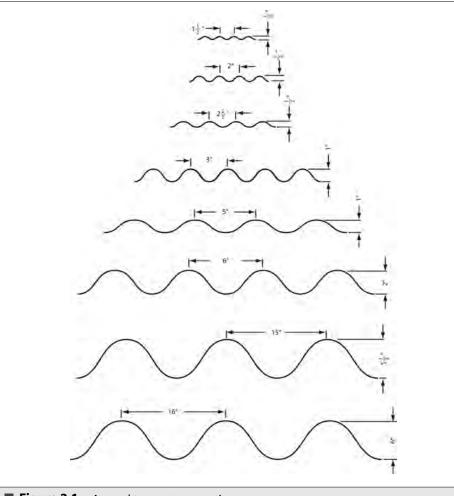
- 2. Structural adequacy to meet embankment and superimposed live loads, along with hydraulic forces. (See Chapters 7 and 8.)
- 3. Trouble-free service through selection of materials to resist abrasion and assure long term durability. (See Chapter 9.)
- 4. Economics—first cost of materials, installation cost, maintenance cost over the life of the pipe. (See Chapter 11.)

In addition to these, the design engineer can make a value-analysis of such other factors as: suitable sources of supply, probable delivery schedule, influence of climate or season of year, coordination with other construction schedules, supplier's assistance, and ease of repair or replacement in relation to the importance or service of the installation.

Alternative materials and designs should be considered so that the final selection will provide the most economical and satisfactory solution for the overall installation and its users.

BACKGROUND

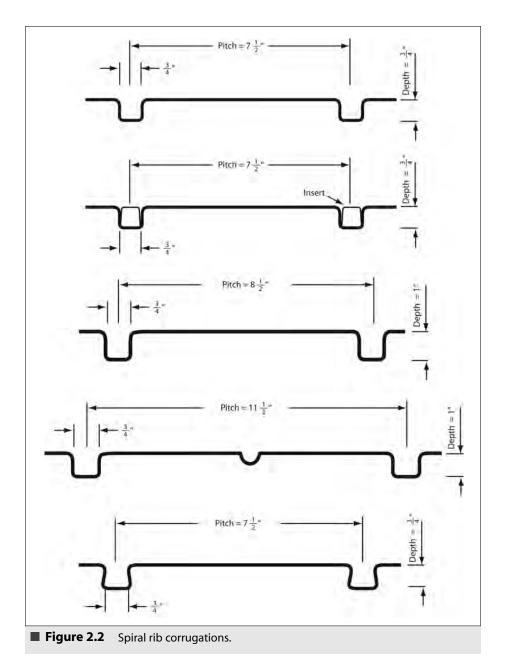
Corrugating a flat sheet has long been known to increase its stiffness and strength Corrugated steel sheets have been produced almost since the first rolling mill was built in England in 1784. But it was not until after 1890, when mass-produced steel sheets became abundant, that their use grew rapidly.

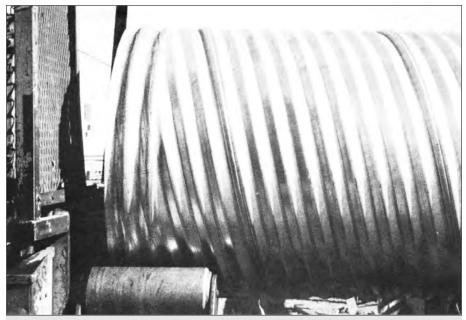

Corrugated steel pipe was first developed and used for culverts in 1896. As experience was gained in the use of this thin-wall, lightweight, shop-fabricated pipe, the diameters gradually increased to 96 inches and larger. Fill heights became greater, even exceeding 100 feet A further development, in 1931, was structural plate pipe with larger corrugations, for field assembly. Diameters and arch spans beyond 26 feet have been installed successfully.

SHAPES

The designer has a wide choice of standard cross-sectional shapes of corrugated steel and structural plate pipe as shown in Table 2.1. Size planned and site conditions use may control the shape selected, with strength and economy as additional factors. For sectional properties of corrugated steel sheets and plates, see Tables 2.3 through 2.15. For seam strengths, sizes, weights and other details, see Tables 2.16 through 2.49.

There are many kinds of corrugations, some of which are shown in Fig. 2.1 and 2.2. Corrugations profiles commonly used for pipes or conduits consist of circular arcs and alternating tangent segments or alternating rectangular ribs and flat segments. Corrugation profiles are typically described by pitch, depth and inside forming radius. Pitch is measured at right angles to the corrugations from crest to crest. The corrugation profiles shown in Figures 2.1 and 2.2 are not fabricated by every CSP manufacturer. Check with your local fabricator before specifying a corrugation profile.


	Shape	Range of Sizes	Common Uses
Round		6 in 51 ft	Culverts, subdrains, sewers, service tunnels, etc. All plates same radius. For medium and high fills (or trenches).
Vertical ellipse 5% nominal		4 - 21 ft nominal; before elongating	Culverts, sewers, service tunnels, recovery tunnels. Plates of varying radii; shop fabrication. For appearance and where backfill compaction is only moderate.
Pipe Arch	Rise Span	Span x Rise 17 in. x 13 in. to 20 ft 7 in x 13 ft 2 in.	Where headroom is limited. Has hydraulic advantages at low flows. Corner plate radius. 18 inches or 31 inches for structural plate.
Underpass*	Rise	Span x Rise 5 ft 8 in. x 5 ft 9 in. to 20 ft 4 in. x 17 ft 9 in.	For pedestrians, livestock or vehicles (structural plate).
Arch	Rise	Span x Rise 5 ft x 1 ft 9 1/2 in. to 82 ft x 42 ft	For low clearance large waterway opening, and aesthetics (structural plate
Horizontal Ellipse	Span +	Span 7 - 40 ft	Culverts, grade separations, storm sewers, tunnels (structural plate).
Pear	- Span -	Span 25 - 30 ft	Grade separations, culverts, storm sewers, tunnels (structural plate).
High Profile Arch	Span -	Span 20 - 83 ft	Culverts, grade separations, storm sewers and tunnels. Ammunition magazines, earth covered storage (structural plate).
Low Profile Arch	Span	Span 20 - 83 ft	Low-wide waterway enclosures, culverts, storm sewers (structural plate).
Box Culverts	Span	Span 10 - 53 ft	Low-wide waterway enclosures, culverts, storm sewers (structural plate).
Specials		Various	For lining old structures or other special purposes. Special fabrication.

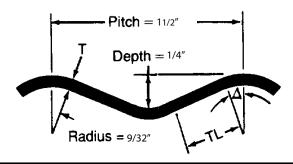

Figure 2.1 Arc and tangent corrugations.

For riveted or resistance spot-welded pipe with circumferential (annular) seams, the corrugations are of 2 2/3 inches pitch by 1/2 inch depth or 3 inches by 1 inch. For lock seam pipe, the seams and corrugations run helically (or spirally) around the pipe. For small diameter subdrain pipe (6, 8, 10 inches, etc.) the pitch vs. depth dimension is 1 $1/2 \times 1/4$ inches. Larger sizes (diameters to 144 inches depending on profile) use 2 x 1/2 inch, 2 2/3 x 1/2 inch, 3 x 1 inch, and 5 x 1 inch corrugations.

The most recent lock seam corrugations introduced to the market were the spiral rib profiles. Developed in the mid 1980's, the pipe wall is spirally formed using rectangular formed ribs between flat wall areas. This unique profile configuration was developed to provide flow characteristics equal to those piping systems normally considered smooth wall. Three profile configurations are available -3/4 inch x 3/4 inch x 7 1/2 inches, 3/4 inch

x 1 inch x 8 1/2 inches and 3/4 inch x 1 inch x 11 1/2 inches (covering diameters from 18 through 108 inches). Structural plate pipe consists of corrugated sheets that are bolted together to form the required shape. The 6 x 2 inch corrugation was the original structural plate corrugation profile. The most recent corrugation profiles introduced for structural plate are commonly referred to as 'deep' corrugated. Corrugation profiles for 'deep' corrugated structural plate include 15 x 5 1/2 inch and the 16 x 6 inch corrugations.

Rerolling an annular end on helical corrugated pipe.


Corrugated steel pipe nested for shipment.

SECTIONAL PROPERTIES

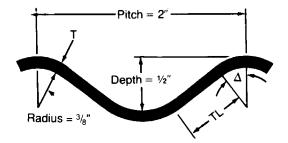
Sectional properties of the arc-and-tangent type of corrugation are derived mathematically. These include area, A, moment of inertia, I, section modulus, S, and radius of gyration, r. Research by the American Iron and Steel Institute has shown that failure loads in bending and deflection within the elastic range can be closely predicted by using computed sectional properties of the corrugated sheet. See Tables 2.3 through 2.15.

Table 2.2										
Conversion of nominal gage to thickness										
Gage No.	22	20	18	16	14	12	10			
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140			
Gage No.	8	7	5	3	1	5/16″	3/8″			
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.1644 0.168 0.170	0.1838 0.188	0.2145 0.218	0.2451 0.249	0.2758 0.280	0.3125 0.318	0.3750 0.380			
Notes: * Also referred to as specified t	hickness fo	r corrugate	d steel pipe	e products.						

For structural plate, tunnel liner plates and other products, see chapters on those products.

Table 2.3

Sectional	Sectional properties of 11/2 x 1/4 in. (Helical)												
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 71	Tangent Angle ∆	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor					
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)						
0.040* 0.052 0.064 0.079 0.109* 0.138* 0.168*	0.0359 0.0478 0.0598 0.0747 0.1046 0.1345 0.1644	0.456 0.608 0.761 0.950 1.331 1.712 2.093	0.571 0.566 0.560 0.554 0.540 0.526 0.511	21.44 21.52 21.61 21.71 21.94 22.17 22.42	0.00025 0.00034 0.00044 0.00057 0.00086 0.00121 0.00163	0.0213 0.0277 0.0340 0.0419 0.0580 0.0753 0.0945	0.0816 0.0842 0.0832 0.0846 0.0879 0.0919 0.0967	1.060 1.060 1.060 1.060 1.060 1.061 1.061					


* Thickness not commonly available. Information only.

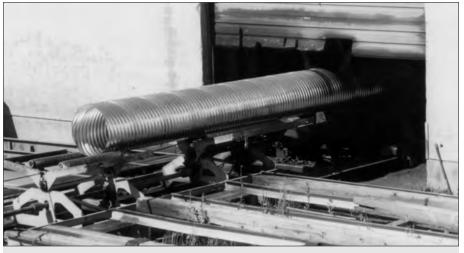
Notes: 1. Per foot of projection about the neutral axis.

To obtain **A** or **S** per **inch** of width, divide the above values by 12.

2. Developed width factor measures the increase in profile length due to corrugating.

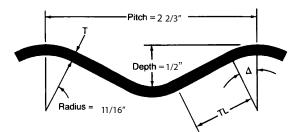
Dimensions are subject to manufacturing tolerances.

Sectional	Sectional properties of 2 x 1/2 in. (Helical)												
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 71	Tangent Angle ∆	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor					
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)						
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136					
0.052 0.064	0.0478 0.0598	0.652 0.815	0.672 0.663	33.29 33.46	0.0015 0.0019	0.0673 0.0832	0.1682 0.1690	1.136 1.136					
0.079	0.0747	1.019	0.625	33.68	0.0025	0.1025	0.1700	1.137					
0.109	0.1046	1.428	0.629	34.13	0.0035	0.1406	0.1725	1.138					
0.138* 0.168*	0.1345 0.1644	1.838 2.249	0.605 0.579	34.62 35.13	0.0047 0.0060	0.1783 0.2166	0.1754 0.1788	1.139 1.140					


* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

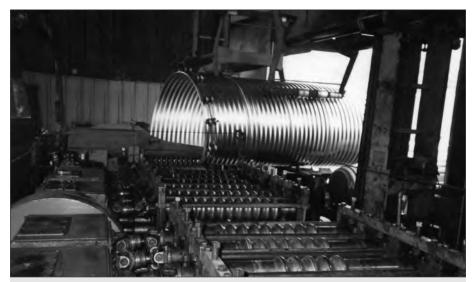
To obtain **A** or **S** per *inch* of width, divide the above values by 12.


2. Developed width factor measures the increase in profile length due to corrugating.

Dimensions are subject to manufacturing tolerances.

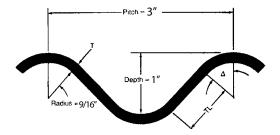
Manufacturing of corrugated steel pipe.

Sectional properties of 2 2/3 x 1/2 in. (Annular or Helical)


			•					
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 72	Tangent Angle ∆	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.465	0.785	26.56	0.0011	0.0503	0.1702	1.080
0.052	0.0478	0.619	0.778	26.65	0.0015	0.0659	0.1707	1.080
0.064	0.0598	0.775	0.770	26.74	0.0019	0.0812	0.1712	1.080
0.079	0.0747	0.968	0.760	26.86	0.0024	0.0998	0.1721	1.080
0.109	0.1046	1.356	0.740	27.11	0.0034	0.1360	0.1741	1.080
0.138	0.1345	1.744	0.720	27.37	0.0045	0.1714	0.1766	1.081
0.168	0.1644	2.133	0.699	27.65	0.0057	0.2069	0.1795	1.081

* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.


To obtain **A** or **S** per **inch** of width, divide the above values by 12.

2. Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

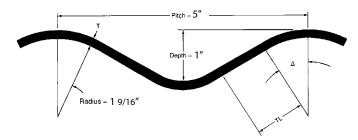
Modern helical lock seam shop fabrication is the most common method of manufacturing corrugated steel pipe.

Corrugated Steel Pipe Design Manual

Table 2.6

Sectional properties of 3 x 1 in. (Annular or Helical)

Specified ThicknessThickness TSection ALength TLAngle Δ Inertia lModulus SGyration Virth Factor(in.)(in.)(in. ² /ft)(in.)(Degrees)(in. ⁴ /in)(in. ³ /ft)(in.)0.040*0.03590.5340.96344.190.00520.11940.34031.235				•		,			
0.040* 0.0359 0.534 0.963 44.19 0.0052 0.1194 0.3403 1.239			Section	Length	Angle			Gyration	Developed Width Factor
	(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
	0.040*	0.0359	0.534	0.963	44.19	0.0052	0.1194	0.3403	1.239
0.052 0.0478 0.711 0.951 44.39 0.0069 0.1578 0.3410 1.240	0.052	0.0478	0.711	0.951	44.39	0.0069	0.1578	0.3410	1.240
0.064 0.0598 0.890 0.938 44.60 0.0087 0.1961 0.3417 1.240	0.064	0.0598	0.890	0.938	44.60	0.0087	0.1961	0.3417	1.240
0.079 0.0747 1.113 0.922 44.87 0.0109 0.2431 0.3427 1.241	0.079	0.0747	1.113	0.922	44.87	0.0109	0.2431	0.3427	1.241
0.109 0.1046 1.560 0.889 45.42 0.0154 0.3358 0.3448 1.243	0.109	0.1046	1.560	0.889	45.42	0.0154	0.3358	0.3448	1.243
0.138 0.1345 2.008 0.855 46.02 0.0202 0.4269 0.3472 1.244	0.138	0.1345	2.008	0.855	46.02	0.0202	0.4269	0.3472	1.244
0.168 0.1644 2.458 0.819 46.65 0.0251 0.5170 0.3499 1.246	0.168	0.1644	2.458	0.819	46.65	0.0251	0.5170	0.3499	1.246


* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain **A** or **S** per **inch** of width, divide the above values by 12.

2. Developed width factor measures the increase in profile length due to corrugating.

Dimensions are subject to manufacturing tolerances.

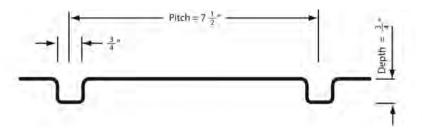
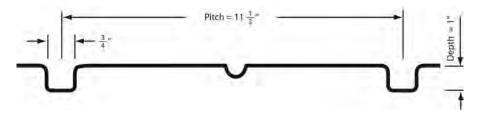
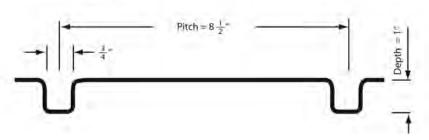


Table 2.7

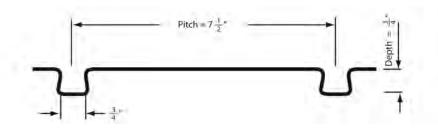
Sectional	Sectional properties of 5 x 1 in. (Helical)											
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 72	Tangent Angle ∆	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor				
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)					
0.064	0.0598	0.794	0.730	35.58	0.0089	0.1960	0.3657	1.106				
0.079	0.0747	0.992	0.708	35.80	0.0111	0.2423	0.3663	1.107				
0.109	0.1046	1.390	0.664	36.30	0.0156	0.3330	0.3677	1.107				
0.138	0.1345	1.788	0.616	36.81	0.0203	0.4210	0.3693	1.108				
0.168	0.1644	2.186	0.564	37.39	0.0250	0.5069	0.3711	1.108				


Chapter 2

Notes: 1. Per foot of projection about the neutral axis. To obtain *A* or *S* per *inch* of width, divide the above values by 12.
 Developed width factor measures the increase in profile. Dimensions are subject to manufacturing tolerances.
 Actual Pitch = 4.9213 in. and Actual Depth = 1.0236 in. Dimensions shown on sketch are nominal.


Table 2.8									
Effective sectional properties of 3/4 x 3/4 x 7 1/2 in. spiral rib (Helical)									
Specified Thickness	Uncoated Thickness T	Area of Section A	Moment of Inertia I	Section Modulus S	Radius of Gyration <i>r</i>	Developed Width Factor			
(in.)	(in.)	(in. ² /ft)	(in. ⁴ /in.)	(in. ³ /ft)	(in.)				
0.064	0.0598	0.509	0.0028	0.0747	0.258	1.170			
0.079	0.0747	0.712	0.0037	0.0940	0.250	1.168			
	0.1046	1.184	0.0055	0.1326	0.237	1.165			
0.109				0.1706	0.228	1.162			

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.
 Properties are effective section properties at full yield stress.


Specified Thickness	Uncoated Thickness T	Area of Section A	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in. ⁴ /in.)	(in. ³ /ft)	(in.)	
0.064 0.079 0.109	0.0598 0.0747 0.1046	0.374 0.524 0.883	0.0046 0.0061 0.0093	0.0736 0.0931 0.1324	0.383 0.373 0.355	1.154 1.153 1.151

3. Properties are effective section properties at full yield stress.

Table 2.10										
Effective sectional properties of $3/4 \times 1 \times 8 1/2$ in spiral rib (Helical)										
Specified Thickness	Thickness A I S r Factor									
(in.)	(in. ² /ft)	(in. ⁴ /in.)	(in. ³ /ft)	(in.)						
0.064 0.079 0.109	0.499 0.694 1.149	0.0060 0.0079 0.0120	0.0957 0.1210 01719	0.379 0.370 0.354	1.199 1.198 1.194					
2. Develop	ed width factor me		e in profile length	h of width, divide the a due to corrugating.	bove values by 12.					

Properties are effective section properties at full yield stress.

Table 2.11

Effective sectional properties of 3/4 x 3/4 x 7 1/2 in. composite ribbed steel pipe (Helical)

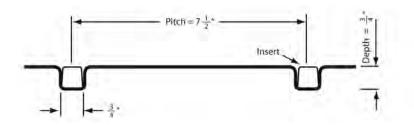
Specified Thickness	Uncoated Thickness T	Area of Section A	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in. ⁴ /in.)	(in. ³ /ft)	(in.)	
0.064	0.0598	0.520	0.0028	0.0643	0.253	1.239
0.079	0.0747	0.728	0.0036	0.0817	0.245	1.233
0.109	0.1046	1.212	0.0054	0.1174	0.232	1.216
0.138	0.1345	1.758	0.0073	0.1541	0.223	1.199

Notes: 1. Per foot of projection about the neutral axis. To obtain *A* or *S* per *inch* of width, divide the above values by 12.

2. Developed width factor measures the increase in profile length due to corrugating.

Dimensions are subject to manufacturing tolerances.

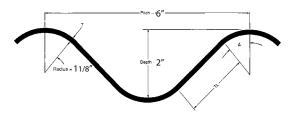
3. Properties are effective section properties at full yield stress.



Perforated corrugated steel pipe is widely used for through-the-pile ventilation of perishable crops.

Multiple CSP lines form an underground stormwater storage facility.

Corrugated Steel Pipe Design Manual


Table 2.12

Effective sectional properties of 3/4 x 3/4 x 7 1/2 in. spiral rib with insert (Helical)

Specified Thickness	Uncoated Thickness T	Area of Section A	Moment of Inertia I	Section Modulus S	Radius of Gyration r	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in. ⁴ /in.)	(in. ³ /ft)	(in.)	
0.064	0.0598	0.509	0.0028	0.0747	0.258	1.170
0.079 0.109	0.0747 0.1046	0.712 1.184	0.0037 0.0055	0.0940 1.1326	0.250 0.237	1.168 1.165
0.138	0.1345	1.717	0.0074	0.1706	0.228	1.162

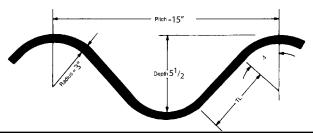
Notes: 1. Per foot of projection about the neutral axis. To obtain **A** or **S** per **inch** of width, divide the above values by 12. 2. Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

3. Properties are effective section properties at full yield stress.

Table 2.13

Sectional properties of 6 x 2 in. (Annular)

Specified Thickness (in.)	Uncoated Thickness T (in.)	Area of Section <u>A</u> (in. ² /ft)	Tangent Length 71. (in.)	Tangent Angle <u>A</u> (Degrees)	Moment of Inertia <i>l</i> (in. ⁴ /in)	Section Modulus S (in. ³ /ft)	Radius of Gyration <i>r</i> (in.)	Developed Width Factor
0.111	0.1046	1.556	1.002	44.47	0.0004	0.000	0.000	1.240
0.111	0.1046	1.556	1.893	44.47	0.0604	0.689	0.682	1.240
0.140	0.1345	2.003	1.861	44.73	0.0782	0.879	0.684	1.241
0.170	0.1644	2.449	1.828	45.00	0.0962	1.066	0.686	1.242
0.188	0.1838	2.739	1.807	45.18	0.1080	1.187	0.688	1.242
0.218	0.2145	3.199	1.773	45.47	0.1269	1.376	0.690	1.243
0.249	0.2451	3.658	1.738	45.77	0.1462	1.562	0.692	1.244
0.280	0.2758	4.119	1.702	46.09	0.1658	1.749	0.695	1.245
0.318	0.3125	4.671	1.653	46.47	0.1900	1.968	0.698	1.246
0.380	0.3750	5.613	1.581	47.17	0.2320	2.340	0.704	1.247


Notes: 1. Per foot of projection about the neutral axis.

To obtain **A** or **S** per **inch** of width, divide the above values by 12.

2. Developed width factor measures the increase in profile length due to corrugating.

Dimensions are subject to manufacturing tolerances.

36

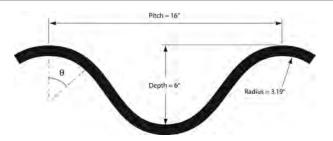


Table 2	.14							
Sectional	properties	s of 15 x 5 ⁻	1/2 in. (An	nular)				
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length TL	Tangent Angle ∆	Moment of Inertia I	Section Modulus S	Radius of Gyration <i>r</i>	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.140	0.1345	2.260	4.361	49.75	0.7146	2.8406	1.9481	1.400
0.170	0.1644	2.762	4.323	49.89	0.8746	3.4602	1.9494	1.400
0.188	0.1838	3.088	4.299	49.99	0.9786	3.8599	1.9502	1.400
0.218	0.2145	3.604	4.259	50.13	1.1436	4.4888	1.9515	1.400
0.249	0.2451	4.118	4.220	50.28	1.3084	5.1114	1.9527	1.400
0.280	0.2758	4.633	4.179	50.43	1.4722	5.7317	1.9540	1.400
0.193	0.1875	3.150	4.293	50.00	0.9985	3.9359	1.9503	1.400
0.255	0.2500	4.200	4.213	50.31	1.3349	5.2107	1.9529	1.400
0.318	0.3125	5.250	4.131	50.62	1.6730	6.4678	1.9555	1.400
0.380	0.3750	6.300	4.047	50.94	2.0128	7.7076	1.9580	1.400

Notes: 1. Per foot of projection about the neutral axis.

To obtain *A* or *S* per *inch* of width, divide the above values by 12. 2. Developed width factor measures the increase in profile length due to corrugating.

Dimensions are subject to manufacturing tolerances.

Table 2	2.15								
Sectional properties of 16 x 6 in. (Annular)									
Nominal Thickness	Design Thickness	Tangent Length	Tangent Angle	Area of Section	Moment of Inertia	Section Modulus	Plastic Modulus	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in.)	(Degrees)	(in. ² /ft)	(in. ⁴ /in)	(in. ³ /in)	(in. ³ /in)	(in.)	
0.157	0.166	4.426	51.294	2.736	0.988	0.311	0.424	2.0813	1.38
0.197	0.195	4.387	51.440	3.218	1.163	0.364	0.498	2.0827	1.38
0.236	0.236	4.331	51.640	3.902	1.413	0.440	0.605	2.0844	1.38
0.276	0.276	4.277	51.840	4.554	1.652	0.511	0.707	2.0863	1.38
0.315	0.313	4.225	52.032	5.166	1.877	0.577	0.803	2.0881	1.38
Notes: 1. A 2. D					5.906 in. soft converte	ed on the ba	sis of 1.0 in	.= 25 mm.	

PIPE SEAMS

The type of pipe seam depends upon both the product and method of manufacture. Most shop-manufactured CSP is produced on a machine that forms helical corrugations; in such case, the seam may be either a continuous helical lock seam or a continuously helical welded seam, depending upon the capabilities of the production facility. However, some shop-manufactured CSP is produced on equipment that forms annular corrugations; in such case, the longitudinal and circumferential seams may be either riveted or spot welded, depending upon the production facilities capabilities and the project specifications. In contrast with CSP, structural plate pipe is always fabricated with annular corrugations and field bolted longitudinal and circumferential seams.

Riveted Seams

Specifications for 2 2/3 x 1/2 inch corrugations call for the use of 5/16 inch diameter rivets for material thickness of 0.064 and 0.079 inches, and 3/8 inch diameter rivets for thickness of 0.109, 0.138, and 0.168 inches. For 3 x 1 inch corrugations, specifications call for 3/8 inch diameter rivets for material thickness of 0.064 and 0.079 inches, and 7/16 inch diameter rivets for thickness of 0.109, 0.138, and 0.168 inches. Longitudinal seams are riveted with one rivet in each corrugation with pipes 42 inches or larger diameter double-riveted. Circumferential rivets for joining sections are spaced on 6 inch centers. The strength of longitudinal seams for steel sheets and rivets is shown in Table 2.16.

Table 2.1	6					
		am strength c ort columns in				
	5/16 ir	n. Rivets		3/8 in. Rivets		7/16 in. Rivets
Specified Thickness	2 2/3 x	: 1/2 in.	2 2/3 x	1/2 in.	3 x 1 in. and 5 x 1 in.	3 x 1 in. and 5 x 1 in.
(in.)	Single	Double	Single	Double	Double	Double
0.064	16,700	21,600			28,700	
0.079	18,200	29,800			35,700	
0.109			23,400	46,800		53,000
0.138			24,500	49,000		63,700
			25.600	51,300		70,700

ote: Values in this table are based on tests conducted by Utah State Dept. of Highways, 1964, and by Pittsb Testing Laboratories, 1966.

Spot Welded Seams

Resistance spot welding of lapped seams is a fabricating method resulting in strength equivalent to riveted seams. Elimination of rivet heads allows a smoother pipe interior and better seating of the connecting band on the exterior.

Bolted Seams and Joints

For structural plate products, high strength bolts, either 3/4 inch or 7/8 inch diameter, hot-dip galvanized, meeting ASTM Specification A 449 are used for field assembly of structural plate installations. Table 2.17 shows the strength of bolted longitudinal seams.

Table 2.1	17						
	rength of bo per foot of s		ural plate l	ongitudina	l seams		
		6 x 2 in.*		15 x 5 1	/2 in. *	16 x 6	in.*
Specified Thickness (in.)	4 Bolts per Foot	6 Bolts per Foot	8 Bolts per Foot	4.8 Bolts per Foot	Bolt Diameter (in.)	4.5 Bolts per Foot	Bolt Diameter (in.)
0.111 0.140 0.169	42000 62000			66000	0.75	81600	0.75
0.170 0.188	81000 93000			87000 102000	0.75 0.75		
0.197 0.218	112000			127000	0.75	118900	0.75
0.236 0.249	132000			144000	0.75	141300	0.75
0.276 0.280	144000	180000	194000	144000	0.75	153300	0.75
0.315 0.249				159000	0.875	153300	0.75
0.276 0.280				177000	0.875	184000	0.875
0.315 0.318 0.380			235000 285000			184000	0.875
desig A796	stry recognized gn manual went 5. Seam strengtł ufacturer.	to publication	, the design se	am strengths f	or 16 x 6 in. wer	e not recogniz	

Handling weight of corrugated steel pipe (2 2/3 x 1/2 in.) Estimated average weights - not for specification use*

			Approximate Pounds Per Linear Foot**								
Inside Diameter (in.)	Specified Thickness (in.)	Metallic Coated	Polymer Coated	Full Bituminous Coated	Full Bituminous Coated and Invert Paved	Coated and	Steel Lined	Concrete Lined			
12	0.064	10	10	12	15						
	0.079	12	12	14	17						
15	0.064	12	13	15	18	28					
	0.079	15	16	18	21	31					
18	0.064	15	16	19	22	34					
	0.079	18	19	22	25	37					
21	0.064	17	18	21	26	39					
	0.079	21	22	25	30	43					

Notes: Pipe arch weights will be the same as the equivalent round pipe.

For example, for 42 x 29, 2 2/3 x 1/2 in. pipe arch, refer to 36 in. diameter pipe weight.

* Lock seam construction only; weights will vary with other fabrication practices.

** For other coatings or linings, the weights may be interpolated.

Table 2.18 continued

ecified ickness (in.) 0.064 0.079 0.109 0.064 0.079 0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.138 0.064 0.079 0.138	Metallic Coated 19 24 33 24 30 41 29 36 49 62 34 42 57 72 38 48	Polymer Coated 20 25 34 25 31 42 30 37 50 63 37 50 63 36 44 59 74 40 50	Approximate Full Bituminous Coated 24 29 38 30 36 47 36 43 56 69 42 50 65 80 48	Full Bituminous Coated and Invert Paved 30 35 44 36 42 53 44 51 64 77 51 59 74 89 57	Full Bituminous Coated and Full Paved 45 50 59 55 60 72 65 75 90 100 77 85 105 115	Steel Lined 30 38 47 42 48 59 51 58 71 84 60 68 82 98	Concrete Lined 65 69 77 82 87 96 98 104 116 127 114 121 135 149
0.079 0.109 0.064 0.079 0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.138 0.064 0.079 0.138 0.064 0.079 0.138	24 33 24 30 41 29 36 49 62 34 42 57 72 38 48	25 34 25 31 42 30 37 50 63 36 44 59 74 40	29 38 30 36 47 36 43 56 69 42 50 65 80	30 35 44 36 42 53 44 51 64 77 51 59 74 89	45 50 59 55 60 72 65 75 90 100 77 85 105 115	30 38 47 42 48 59 51 58 71 84 60 68 82	69 77 82 87 96 98 104 116 127 114 121 135
0.079 0.109 0.064 0.079 0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.138 0.064 0.079 0.138 0.064 0.079 0.138	24 33 24 30 41 29 36 49 62 34 42 57 72 38 48	25 34 25 31 42 30 37 50 63 36 44 59 74 40	29 38 30 36 47 36 43 56 69 42 50 65 80	35 44 36 42 53 44 51 64 77 51 59 74 89	50 59 55 60 72 65 75 90 100 77 85 105 115	38 47 42 48 59 51 58 71 84 60 68 82	69 77 82 87 96 98 104 116 127 114 121 135
0.109 0.064 0.079 0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.109 0.138 0.064 0.079 0.138	 33 24 30 41 29 36 49 62 34 42 57 72 38 48 	34 25 31 42 30 37 50 63 36 44 59 74 40	38 30 36 47 36 43 56 69 42 50 65 80	44 36 42 53 44 51 64 77 51 59 74 89	59 55 60 72 65 75 90 100 77 85 105 115	47 42 48 59 51 58 71 84 60 68 82	77 82 87 96 98 104 116 127 114 121 135
0.079 0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.138 0.064 0.079 0.138 0.064 0.079 0.138	30 41 29 36 49 62 34 42 57 72 38 48	31 42 30 37 50 63 36 44 59 74 40	36 47 36 43 56 69 42 50 65 80	42 53 44 51 64 77 51 59 74 89	60 72 65 75 90 100 77 85 105 115	48 59 51 58 71 84 60 68 82	87 96 98 104 116 127 114 121 135
0.109 0.064 0.079 0.109 0.138 0.064 0.079 0.109 0.138 0.064 0.079 0.138	41 29 36 49 62 34 42 57 72 38 48	42 30 37 50 63 36 44 59 74 40	47 36 43 56 69 42 50 65 80	53 44 51 64 77 51 59 74 89	72 65 90 100 77 85 105 115	59 51 58 71 84 60 68 82	96 98 104 116 127 114 121 135
0.064 0.079 0.109 0.138 0.064 0.079 0.109 0.138 0.064 0.079 0.109	29 36 49 62 34 42 57 72 38 48	30 37 50 63 36 44 59 74 40	36 43 56 69 42 50 65 80	44 51 64 77 51 59 74 89	65 75 90 100 77 85 105 115	51 58 71 84 60 68 82	98 104 116 127 114 121 135
0.079 0.109 0.138 0.064 0.079 0.109 0.138 0.064 0.079 0.138	36 49 62 34 42 57 72 38 48	37 50 63 36 44 59 74 40	43 56 69 42 50 65 80	51 64 77 51 59 74 89	75 90 100 77 85 105 115	58 71 84 60 68 82	104 116 127 114 121 135
0.109 0.138 0.064 0.079 0.109 0.109 0.138 0.064 0.079 0.109	49 62 34 42 57 72 38 48	50 63 36 44 59 74 40	56 69 42 50 65 80	64 77 51 59 74 89	90 100 77 85 105 115	71 84 60 68 82	116 127 114 121 135
0.138 0.064 0.079 0.109 0.138 0.064 0.079 0.109	62 34 42 57 72 38 48	63 36 44 59 74 40	69 42 50 65 80	77 51 59 74 89	100 77 85 105 115	84 60 68 82	127 114 121 135
0.064 0.079 0.109 0.138 0.064 0.079 0.109	34 42 57 72 38 48	36 44 59 74 40	42 50 65 80	51 59 74 89	77 85 105 115	60 68 82	114 121 135
0.079 0.109 0.138 0.064 0.079 0.109	42 57 72 38 48	44 59 74 40	50 65 80	59 74 89	85 105 115	68 82	121 135
0.109 0.138 0.064 0.079 0.109	57 72 38 48	59 74 40	65 80	74 89	105 115	82	135
0.138 0.064 0.079 0.109	72 38 48	74 40	80	89	115		
0.064 0.079 0.109	38 48	40				98	149
0.079 0.109	48		48	57			1
0.109	-	50			85	67	128
			58	67	95	77	138
	65	67	75	84	120	94	154
0.138	82	84	92	101	130	111	170
0.168	100		110	119	155		186
0.079	54	56	65	76	105	87	156
0.109							173
0.138	-	94				125	191
0.168	112		123	134	175		
0.109	81	83	92	106	140	117	192
0.138		105				139	212
0.168	124		135	149	190		232
0.109	89	91	101	117	160	129	211
0.138	-	115				153	233
0.168	137		149	165	210		255
0.138	123	126	137	154	210	167	254
0.168	149		163	180	236		278
0.168	161		177	194	260		302
0.168	173		190	208	270		325
 D. D. D	109 138 168 109 138 168 109 138 168 138 168 168 168 168 168 168 ch weight mple, fo	109 73 138 92 168 112 109 81 138 103 168 124 109 89 138 131 168 137 138 123 168 149 168 161 168 173 ch weights will be th mple, for 42 x 29, 2 2	109 73 75 138 92 94 168 112 94 109 81 83 138 103 105 168 124 91 138 113 115 168 137 126 168 149 126 168 161 126 168 161 168 168 161 168 168 161 168 168 173 126	109 73 75 84 138 92 94 103 168 112 123 109 81 83 92 138 103 105 114 168 124 135 109 89 91 101 138 113 115 125 168 137 149 149 138 113 115 125 168 137 149 163 168 161 177 168 161 168 161 177 168 173 190 ch weights will be the same as the equivalent to mple, for 42 x 29, 2 2/3 x 1/2 in, pipe arch, refer 100 100	109 73 75 84 95 138 92 94 103 144 168 112 123 134 109 81 83 92 106 138 103 105 114 128 168 124 135 149 109 89 91 101 117 138 113 115 125 141 168 137 149 165 137 138 113 115 125 141 168 137 149 165 137 138 123 126 137 154 168 149 163 180 163 168 161 177 194 168 168 173 190 208 90 ch weights will be the same as the equivalent round pipe. mple, for 42 x 29, 2 2/3 x 1/2 in. pipe arch, refer to 36 in. diar	109 73 75 84 95 130 138 92 94 103 144 155 168 112 123 134 175 109 81 83 92 106 140 138 103 105 114 128 180 168 124 135 149 190 109 89 91 101 117 160 138 113 115 125 141 180 168 137 149 165 210 138 137 126 137 154 210 138 123 126 137 154 210 168 161 177 194 260 168 161 190 208 270 ch weights will be the same as the equivalent round pipe. mple, for 42 x 29, 2 2/3 x 1/2 in. pipe arch, refer to 36 in. diameter pipe weight	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

** For other coatings or linings, the weights may be interpolated.

Table				(- · · ·				
	g weight o ed average					n.)		
Lotiniat		weights				_inear Foot**	ŀ*	
Inside Diameter (in.)	Specified Thickness (in.)	Metallic Coated	Polymer Coated	Full Bituminous Coated	Full Bituminous Coated and Invert Paved	Full Bituminous Coated and Full Paved	Steel Lined [†]	Concrete Lined
48	0.064 0.079 0.109 0.138 0.168	44 54 74 94 114	46 56 76 96	54 64 84 104 124	71 81 101 121 141	117 127 147 167 187	74 84 104 125	
54	0.064 0.079 0.109 0.138 0.168	50 61 83 106 129	52 63 85 108	66 77 100 123 146	84 95 118 140 163	138 149 171 194 217	84 95 118 140	197 207 226 245 264
60	0.064 0.079 0.109 0.138 0.168	55 67 92 118 143	57 69 94 120	73 86 110 136 161	93 105 130 156 181	153 165 190 216 241	93 105 130 156	218 229 251 272 293
66	0.064 0.079 0.109 0.138 0.168	60 74 101 129 157	63 77 104 132	80 94 121 149 177	102 116 143 171 199	168 181 208 236 264	102 116 145 172	240 252 276 299 322
72	0.064 0.079 0.109 0.138 0.168	66 81 110 140 171	69 84 113 143	88 102 132 162 193	111 126 156 186 217	183 197 227 257 288	112 127 157 187	262 275 301 326 351
78	0.064 0.079 0.109 0.138 0.168	71 87 119 152 185	74 90 122 155	95 111 143 176 209	121 137 169 202 235	198 214 246 279 312	120 136 168 202	298 326 353 380
84	0.064 0.079 0.109 0.138 0.168	77 94 128 164 199	80 97 131 167	102 119 154 189 224	130 147 182 217 253	213 230 264 300 335	130 147 181 218	321 351 379 409
90	0.064 0.079 0.109 0.138 0.168	82 100 137 175 213	86 104 141 179	109 127 164 202 240	140 158 195 233 271	228 246 283 321 359	139 157 194 233	376 406 438

Notes: Pipe arch weights will be the same as the equivalent round pipe. For example: for 81 x 59,

3 x 1 in. pipe arch, refer to 72 in. diameter pipe weight.

* Steel weights are 5 x 1 in. are approximately 12% less than those used in this table for metallic coated pipe.

** Lock seam construction only, weights will vary with other fabrication practices.

*** For other coatings or linings the weights may be interpolated.

† Steel lined available in 3 x 1 in. only.

Table 2.19 continued

				pe (3 x 1 in ecification		n.)		
Estimate	average	weights –		pproximate		inear Foot*	(*	
Inside Diameter (in.)	Specified Thickness (in.)	Metallic Coated	Polymer Coated	Full Bituminous Coated	Full Bituminous Coated and Invert Paved	Full Bituminous Coated and Full Paved	Steel Lined [†]	Concrete Lined
96 102	0.064 0.079 0.109 0.138 0.168 0.064 0.079 0.109	87 107 147 188 228 93 114 155	91 111 151 192 97 118 159	116 136 176 217 257 124 145 189	149 169 209 250 290 158 179 220	242 262 302 343 383 258 279 320	148 168 208 249 158 179 222	401 433 467 426
108	0.138 0.168 0.079 0.109 0.138 0.168	198 241 120 165 211 256	202 124 169 215	229 272 153 198 244 289	263 306 188 233 279 324	363 406 295 340 386 431	264 189 235 279	460 496 487 525
114	0.079 0.109 0.138 0.168	127 174 222 271	132 179 227	162 209 257 306	199 246 294 343	312 359 407 456	200 248 295	514 554
120	0.109 0.138 0.168	183 234 284	188 239	220 271 321	259 310 360	378 429 479	260 311	541 583
126	0.109 0.138 0.168	195 247 299	200 252	233 285 337	274 326 378	400 452 504	276 327	
132	0.109 0.138 0.168	204 259 314	209 264	244 299 354	287 342 397	419 474 529	289 343	
138	0.109 0.138 0.168	213 270 328	219 276	255 312 370	300 357 415	438 495 553	300 357	
144	0.138 0.168	282 344	288	326 388	373 435	517 579	373	
150	0.138 0.168	294 358	300	340 404	389 453	538 602	389	
156	0.138 0.168	306 373	312	354 421	406 473	560 627	405	

Notes: Pipe arch weights will be the same as the equivalent round pipe. For example: for 81 x 59,

3 x 1 in. pipe arch, refer to 72 in. diameter pipe weight.

* Steel weights are 5 x 1 in are approximately 12% less than those used in this table for metallic coated pipe.

** Lock seam construction only, weights will vary with other fabrication practices.

*** For other coatings or linings the weights may be interpolated.

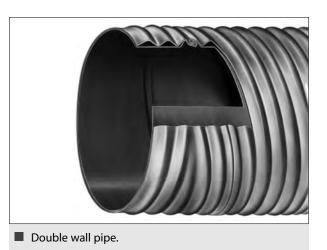
+ Steel lined available in 3 x 1 in. only.

	erage weights –	not for specific		-	bed steel pip
		Approxim	ate Pounds Per Lir	near Foot**	
Inside Diameter (in.)	Specified Thickness (in.)	Galvanized	Asphalt Fully Coated	Asphalt Fully Coated & Invert Paved	Composite Ribbed Steel Pipe
18	0.064	15	19	20	
	0.079	18	22	23	
21	0.064	17	21	22	
	0.079	21	25	26	
~ /	0.109	29	33	33	~ ~
24	0.064	19	24	25	21
	0.079	24	29	32	25
20	0.109	36	41	42	33
30	0.064 0.079	24 30	30 36	32 38	27 32
	0.109	42	48	50	32 41
36	0.064	29	36	38	32
50	0.079	36	43	45	28
	0.109	50	57	59	49
42	0.064	33	41	43	37
	0.079	42	50	52	44
	0.109	58	66	60	57
48	0.064	38	48	50	43
	0.079	48	58	60	50
	0.109	66	76	78	66
54	0.064	43	54	56	48
	0.079	54	65	67	56
	0.109	75	86	88	74
60	0.064	48	60	62	53
	0.079	60	72	74	62
	0.109	83	95	97	82
	0.138	99+	111 +		
66	0.064 ***	53	66	68	58
	0.079	66	79	81	69
	0.109	91	104	106	90
70	0.138	109+	121 +		(2)
72	0.064	72	04	00	63 75
	0.079 0.109	72 99	86	89 116	75 98
	0.109	99 119+	113 133 +	116	98
78	0.138	78	93	96	81
70	0.109	108	115	118	106
	0.138	129+	144 +	10	100
84	0.079 ***	71	101	104	87
01	0.109	116	133	136	114
	0.138	139+	156 +		
90	0.109	124	143	147	122
	0.138	149+	168 +		
96	0.109	132	152	156	130
	0.138	158+	178 +		
102	0.109	141	163	167	138
	0.138	168+	190 +		
108	0.109 ***	150	172	176	146
	0.138	175+	197 +		
114	0.138	196	219	223	
120	0.138	206	230	235	

Relining of a failed concrete box with corrugated steel pipe arch.

SPIRAL RIB STEEL PIPE

Spiral rib pipe is manufactured from a continuous strip of metallic coated or polymer coated steel passed through a roll forming line that forms the external ribs and the edges. The rolled shape section is then helically formed into pipe and the edges are joined by lock seaming. The finished product has the structural characteristics needed for installation and a smooth interior for improved hydraulics. See Tables 2.8 through 2.12 for profile shapes.



DOUBLE WALL STEEL PIPE

Double Wall (steel lined) is a smooth interior corrugated steel pipe fabricated in full circular cross section with a smooth steel liner and helically corrugated shell integrally attached at the helical lock seams from end to end of each length of pipe. The steel interior lining provides for improved hydraulics.

CSP CONCRETE LINED PIPE

The interior lining of the corrugated steel pipe is composed of an extremely dense, high strength concrete. The lining provides a superior wearing surface for extended structure life as well as a smooth interior for improved hydraulics.

Concrete lined corrugated steel pipe.

COMPOSITE RIBBED STEEL PIPE

Composite ribbed steel pipe is manufactured from a continuous strip of metallic coated steel passed through a roll forming mill that forms external ribs. The coated steel is protected by a polymer film on the outside and has a 75 mil polyethylene interior liner for protection from effluent corrosion and/or abrasion as well as providing a smooth interior for improved hydraulics.

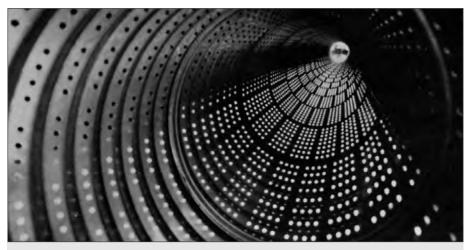
CSP SLOTTED DRAIN INLETS

By welding a narrow section of grating in a continuous slot cut in the top of a corrugated steel pipe, a continuous grate inlet is achieved. Originally conceived to pick up sheet flow in roadway medians, parking lots, airports, etc., this product has proven even more useful as a curb inlet. Detailed hydraulic design information is provided in Chapter 4.

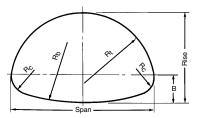
Slotted drain inlet pipe.

Slotted drain inlet pipe.

Slotted drain inlet pipe.


Slotted drain inlet pipe.

PERFORATED PIPE


Corrugated steel pipe is available with perforations for collection or dissemination of water underground and is an effective means of storm water management. Subsurface, or groundwater control, is the most common use for perforated corrugated steel pipe. In this application, only the lower half of the pipe is perforated as shown in Table 2.21. Most fabricators are equipped to furnish 3/8 inch diameter holes. The sizes and layout of perforations can be specified to match site requirements. The perforations are located on the inside crests or along the neutral axis of the corrugations, with one row of perforations in each corrugation.

Fully perforated helical CSP is ideally suited for retention of storm water, permitting slow infiltration, or recharge, into the trench walls. Underground disposal of storm water runoff in urban development design has the potential for saving millions of dollars in tax-payer money. Recharge design makes the concept of zero increase in runoff possible thus avoiding overloading trunk storm drains, and/or streams and rivers. The cost of reconstructing existing drains or channel improvements will usually prove to be far greater than recharge design. In the retention application, the pipe is typically perforated for the full 360 degrees. Perforations in fully perforated helical pipe usually provide an opening area of not less than 2.3% of the pipe surface.

	galvanized co s, Weights, Per	orrugated pipe forations	e data*			
Nominal Pe	erforations	Minimum		Specified	Thickness	
		Width of Unperforated	0.052	0.064	0.052	0.064
Internal Diameter	Number of Rows	Bottom		Weight,	lbs per ft	
Diameter		Segment	Helically Cor	rugated Pipe	Annular Cor	rugated Pipe
(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
6	4	3.8	3.8	4.7	5.0	5.6
8	4	5.1	5.0	6.2	6.3	7.3
10	4	6.4	6.5	7.6	-	9.0
12	6	7.7	-	9.9	-	10.5
15	6	9.6	-	12.4	-	12.9
18	6	11.5	-	14.8	-	15.3
21	6	13.5	-	17.2	-	17.7
24	8	15.4	-	19.3	-	20.0

The pipe is perforated for the full 360° to be used in a subsurface recharge system.

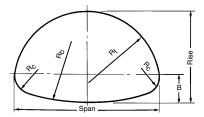
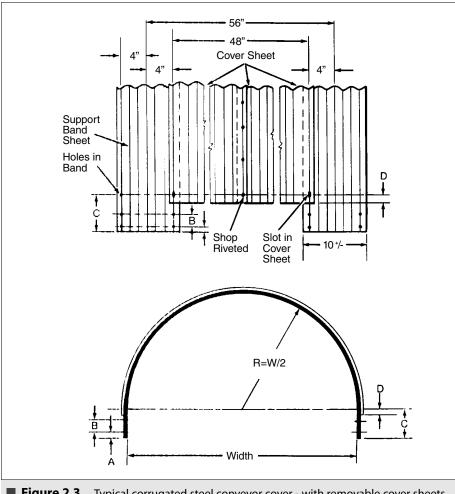

Equiv.	De	sign	Waterway	Layout Dimensions					
Diameter	Span	Rise	Area	В	Rc	Rt	Rb		
(in.)	(in.)	(in.)	(ft ²)	(in.)	(in.)	(in.)	(in.)		
15	17	13	1.1	4 1/8	3 1/2	8 5/8	25 5/		
18	21	15	1.6	4 7/8	4 1/8	10 3/4	33 1/		
21	24	18	2.2	5 5/8	4 7/8	11 7/8	34 5/		
24	28	20	2.9	6 1/2	5 1/2	14	42 1/		
30	35	24	4.5	8 1/8	6 7/8	17 7/8	55 1/		
36	42	29	6.5	9 3/4	8 1/4	21 1/2	66 1/		
42	49	33	8.9	11 3/8	9 5/8	25 1/8	77 1/		
48	57	38	11.6	13	11	28 5/8	88 1/		
54	64	43	14.7	14 5/8	12 3/8	32 1/4	99 1/		
60	71	47	18.1	16 1/4	13 3/4	35 3/4	110 1		
66	77	52	21.9	17 7/8	15 1/8	39 3/8	121 1		
72	83	57	26.0	19 1/2	16 1/2	43	132 1		

Table 2.23

Equiv. Nominal		Design		Waterway	Layout Dimensions					
Diameter	Size	Span	Rise	Area	В	Rc	Rt	Rb		
(in.)	(in.)	(in.)	(in.)	(ft ²)	(in.)	(in.)	(in.)	(in.)		
48	53 x 41	53	41	11.7	15 1/4	10 3/16	28 1/16	73 7/16		
54	60 x 46	58 1/2	48 1/2	15.6	20 1/2	18 3/4	29 3/8	51 1/8		
60	66 x 51	65	54	19.3	22 3/4	20 3/4	32 5/8	56 1/4		
66	73 x 55	72 1/2	58 1/4	23.2	25 1/8	22 7/8	36 3/4	63 3/4		
72	81 x 59	79	62 1/2	27.4	23 3/4	20 7/8	39 1/2	82 5/8		
78	87 x 63	86 1/2	67 1/4	32.1	25 3/4	22 5/8	43 3/8	92 1/4		
84	95 x 67	93 1/2	71 3/4	37.0	27 3/4	24 3/8	47	100 1/4		
90	103 x 71	101 1/2	76	42.4	29 3/4	26 1/8	51 1/4	111 5/8		
96	112 x 75	108 1/2	80 1/2	48.0	31 5/8	27 3/4	54 7/8	120 1/4		
102	117 x 79	116 1/2	84 3/4	54.2	33 5/8	29 1/2	59 3/8	131 3/4		
108	128 x 83	123 1/2	89 1/4	60.5	35 5/8	31 1/4	63 1/4	139 3/4		
114	137 x 87	131	93 3/4	67.4	37 5/8	33	67 3/8	149 1/2		
120	142 x 91	138 1/2	98	74.5	39 1/2	34 3/4	71 5/8	162 3/8		
126	150 x 96	146	102	81	41	36	76	172		
132	157 x 101	153	107	89	43	38	80	180		
138	164 x 105	159	113	98	45	40	82	184		
144	171 x 110	165	118 1/2	107	47	41	85	190		

Chapter 2

Note: Layout dimensions are typical manufactured dimensions. Specified dimensions are found in ASTM A760.



	layout deta posite ribbe								
Equiv.	Des	ign	Waterway	Layout Dimensions					
Diameter	Span	Rise	Area	В	Rc	Rt	Rb		
(in.)	(in.)	(in.)	(ft ²)	(in.)	(in.)	(in.)	(in.)		
18	20	16	1.7	5 1/8	5	10 1/4	27 1/2		
21	23	19	2.3	5 7/8	5 3/8	11 5/8	34 1/4		
24	27	21	3.0	6 3/4	5 3/4	13 1/2	40 7/8		
30	33	26	4.7	8 3/4	7 1/8	16 5/8	51 3/8		
36	40	31	6.7	10 3/8	8 3/8	20 1/4	62 1/2		
42	46	36	9.2	12 3/8	9 3/4	23 1/4	73		
48	53	41	12.1	14	11 1/8	26 5/8	83 1/2		
54	60	46	15.6	20 1/2	18 3/4	29 3/8	51 1/8		
60	66	51	19.3	22 3/4	20 3/4	32 5/8	56 1/4		
66	73	55	23.2	25 1/8	22 7/8	36 3/4	63 3/4		
72	81	59	27.4	23 3/4	20 7/8	39 1/2	82 5/8		
78	87	63	32.1	25 3/4	22 5/8	43 3/8	92 1/4		
84	95	67	37.0	27 3/4	24 3/8	47	100 1/4		
90	103	71	42.4	29 3/4	26 1/8	51 1/4	111 5/8		
96	112	75	48.0	31 5/8	27 3/4	54 7/8	120 1/4		
102	117	79	54.2	33 5/8	29 1/2	59 3/8	131 3/4		
Notes: Layou	ut dimensions a	re typical manu	factured dimen	sions. Specified	dimensions are	found in ASTN	A760.		

CONVEYOR COVERS

Arch Sections. Perhaps the most commonly used cover is a half-circle steel arch section, 48 inches long, supported on band sheets 10 inches wide. See Figure 2.3. These band sheets in turn are supported by bolting to the conveyor frame. Diameters of support bands and cover sheets are optional, to meet the conveyor equipment manufacturer's designs, but usually range from 36 to 72 inches, in suitable thicknesses of steel. Cover sheets are secured by one bolt at each corner and can be removed quickly when necessary. Corrugations should run transverse to the conveyor for greater strength with minimum framing. Where the arch covers not only the conveyor belt, but also the walkway, sheets with larger corrugations (6 x 2 inches) can be provided.

Horseshoe or Full Round. The horseshoe shape finds use where weighing equipment or other facilities require a larger cover. A circular or elliptical shape can also serve as a beam to strengthen the span between bents.

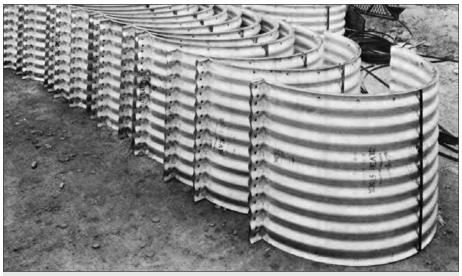


Figure 2.3 Typical corrugated steel conveyor cover - with removable cover sheets supported by narrower band arches.

NESTABLE CORRUGATED STEEL PIPE

Nestable pipe offers a fast and economical solution to contractors and owners who require a strong casing to place around an already installed utility line. This can be done easily without disrupting the line to be encased.

There are two standard methods used in attaching the half-round pipe segments together, interlocking notches and mating flanges. Nesting, a shipping technique developed in the 1930's, was devised to eliminate problems for overseas shipment. It provides an economical solution to conserve shipping space.

Nestable pipe segments to be assembled into corrugated steel pipe.

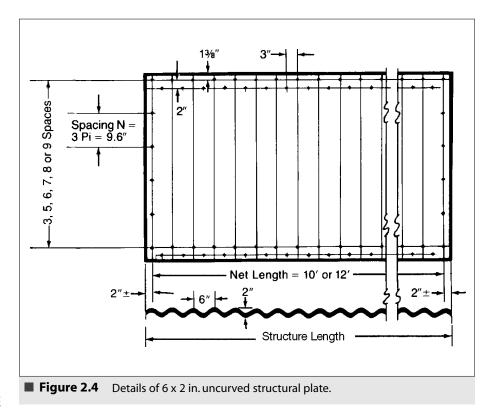
STRUCTURAL PLATE PRODUCTS

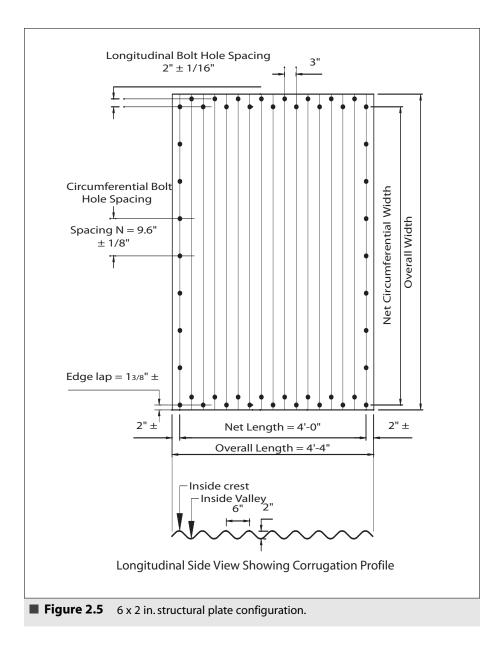
Product Description

Structural plate pipes are structures where corrugated steel sections are bolted together to form the required shape. The corrugated sections are commonly referred to as plates. The $6 \ge 2$ inch corrugation shown in Figure 2.1 is the standard. Structural plate structures are specified where the pipe required exceeds the size that can be shipped to the job site, or where earth cover is so great that the wall thickness furnished by a shop-manufactured pipe will not meet design requirements.

The corrugations are formed at right angles to the length of the bridge or culvert. The length of a plate is measured in a direction parallel to the length of the structure. The width of a plate is, therefore, measured in a direction perpendicular to the length of the structure, around the periphery of the structure. See Figures 2.4 and 2.5.

Standard plates are fabricated in three lengths and several different widths. The plate width designation, N, is used to describe the various plate widths available. N is the spacing between two circumferential bolts, or one circumferential bolt hole space (circumferential refers to the direction around the periphery of the structure, at right angles to the length of the structure). For instance, a 5N plate has a net width of 5 circumferential bolt hole spaces and an 8N plate has a net width of 8 circumferential bolt hole spaces. The bolt hole space, N, is 9.6 inches (see Table 2.25). Note that not all widths are available in all lengths.


Plates are furnished curved to various radii and are clearly identified by the fabricator for field assembly. The fabricator provides assembly drawings to guide the installer. The plates are available in thicknesses from 0.111 inches to 0.380 inches See Table 2.13 for sectional properties. Weights of individual plate sections are shown in Table 2. 26. Approximate weights of structural plate structures are readily calculated using these values.


Section Properties

Section properties, used for design, are provided in Table 2.13. As with corrugated steel pipe corrugations, properties of the arc-and-tangent structural plate corrugation are derived mathematically using the design thickness. The properties in the table include area, moment of inertia, section modulus and radius of gyration.

Sizes and Shapes

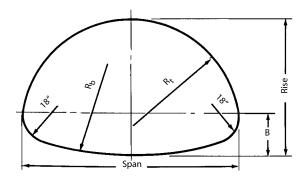
The plates are assembled into various shapes as indicated in Tables 2.27 through 2.36. The shapes include round, pipe arch, single-radius arch, horizontal ellipse, low profile arch, high profile arch, pear, underpass and vertical ellipse. Special shapes, and other sizes of standard shapes beyond what is shown in the tables, are also available. The fabricator provides detailed assembly instructions with each structure.

6 x 2 in. corrugated structural plate sections — details of uncurved plates

lominal Plate Width, N*	Net	Width	Overall Width	Number of Circumference Bolt Holes
	(i	n.)	(in.)	
3N	28.8	28 13/16	33 9/16	4
4N	38.4	38 3/8	43 1/8	5
5N	48.0	48	52 3/4	6
6N	57.6	57 5/8	62 3/8	7
7N	67.2	67 3/16	71 15/16	8
8N	76.8	76 13/16	81 9/16	9
9N	86.4	86 3/8	91 1/8	10
10N	96.0	96	100 3/4	11
11N	105.6	105 5/8	110 3/8	12
12N	115.2	115 3/16	119 15/16	13
13N	124.8	124 13/16	129 9/16	14
14N	134.4	134 3/8	139 1/8	15
15N	144.0	144	148 3/4	16
16N	153.6	153 5/8	158 3/8	17

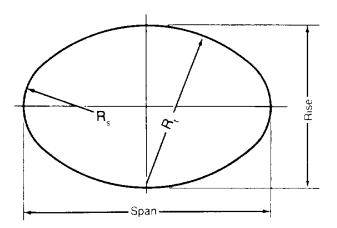
Table 2.26

Nominal	Net			Approx.	Wt. Of Ind			ed Plates			Number of
	Length										
	ft	0.111	Specified Thickness, in. 0,111 0.140 0.170 0.188 0.218 0.249 0.280 0.318 0.380						Assembly Bolts/Plate		
	10										42
3N 3N	10	161 193	205 246	250 299	272 325	316 379	361 432	405 485	468 560	559 669	42 50
5N	12	253	323	393	428	498	432 568	638	730	872	44
5N	10	303	325 386	393 470	428 511	498 595	678	762	873	1043	44 52
6N	12	299	382	470	506	595	678	754	859	1043	45
6N	10	357	362 456	405 555	508 604	703	801			1020	
7N	12	345	456	536	583	679	774	900 869	1027 982	11227	53 46
7N 7N	10	545 412	526	536 640	585 697	810	924	1038	1186	1417	40 54
							-		1100	1417	-
8N 8N	10 12	396	504	613	667	775	878	986			47
9N	12	473 431	603	732	797 743	927 865	1050 986	1176			55
9N 9N	10	431 517	548 657	666 799	-			1108			48
					892	1038	1183	1330			56
3N	4	72	91	111	122	142	162	182			18
4N	4 4	93 113	117	142	157	182	208	234			19
5N 6N	4		143	174	192	222	254	286			20
		134	169	205	227	263	300	338			21
7N	4	154	195	236	261	303	346	389			22
8N	4	175	221	268	296	343	392	441			23
9N	4	195	246	299	331	384	438	493			24
10N	4	216	272	331	366	424	484	545			25
11N	4	236	298	362	400	464	530	596			26
12N	4	257	324	394	435	505	576	648			27
13N	4	277	350	425	470	545	622	670			28
14N	4	298	376	456	505	585	668	752			29
15N 16N	4 4	318 339	402 428	488 519	539 574	626 666	714 760	803 855			30 31
Notes: 1 2	Plates For g thickr	are galv alvanized nesses 0.2	anized wi l plate thi 218 and 0	th an ave cknesses .249 in., b	on standa rage coati 0.111 to 0 olt length	ng mass (.188 in., b s are 1 1/2	of 3 oz/ft ² olt lengtl 2 and 1 3,	total bo s are 1 1, 4 in.; for t	th surface /4 and 1 1 thickness	es). /2 in.; for	
3		engths are 1 1/2 and 2 in. Bolts are color coded for the different lengths.ht of bolts and nuts in lbs. per hundred:1 1/4 in. = 522 in. = 59.51 1/2 in. = 553 in. = 72.5									
4	the n	umber of	e approx. plates in	the perip	uctures pe hery by th vide by pla	e plate w	eights fro				

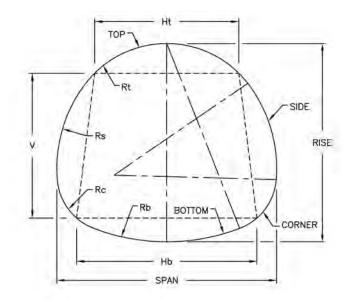


Structural plate pipe — sizes and end areas

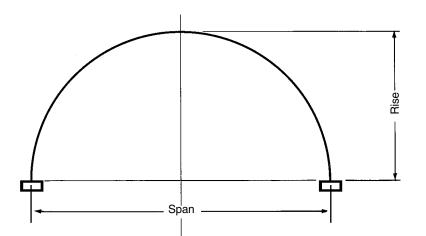
Pipe Diameter (ft)	End Area (ft ²)	Periphery No. of Plates	N	Pipe Diameter (ft)	End Area (ft ²)	Periphery No. of Plates	N
5.0	20	4	20	16.0	201	10	64
5.5	24	4	22	16.5	214	10	66
6.0	28	4	24	17.0	227	10	68
6.5	33	4	26	17.5	241	10	70
7.0 7.5	38 44	4	28 30	18.0 18.5	254 269	12 12	72 74
8.0	50	6	30	18.5	289	12	74 76
8.5	57	6	32 34	19.0	284	12	76 78
0.5	57	0	54	19.5	299	12	78
9.0	64	6	36	20.0	314	12	80
9.5	71	6	38	20.5	330	12	82
10.0	79	6	40	21.0	346	12	84
10.5	87	6	42	21.5	363	14	86
11.0	95	8	44	22.0	380	14	88
11.5	104	8	46	22.5	398	14	90
12.0	113	8	48	23.0	415	14	92
12.5	123	8	50	23.5	434	14	94
13.0	133	8	52	24.0	452	14	96
13.5	143	8	54	24.5	470	14	98
14.0	154	8	56	25.0	491	16	100
14.5	165	10	58	25.5	510	16	102
15.0	177	10	60	26.0	530	16	104
15.5	189	10	62				


Fish Passage Project on the Mc Cloud River under the Mc Cloud Rail Road in Northern California. 16 foot and 20 foot diameter structural plate pipes.

Dimensions			La	yout Dimensio	Periphery		
Span (ft-in.)	Rise (ft-in.)	Waterway Area (ft ²)	В (in.)	R _t (ft)	R _b (ft)	No. of Plates	Total N
6-1	4-7	22	21.0	3.07	6.36	5	22
6-4	4-9	24	20.5	3.18	8.22	5	23
6-9	4-11	26	22.0	3.42	6.96	5	24
7-0	5-1	28	21.4	3.53	8.68	5	25
7-3	5-3	31	20.8	3.63	11.35	6	26
7-8	5-5	33	22.4	3.88	9.15	6	27
7-11	5-7	35	21.7	3.98	11.49	6	28
8-2	5-9	38	20.9	4.08	15.24	6	29
8-7	5-11	40	22.7	4.33	11.75	7	30
8-10	6-1	43	21.8	4.42	14.89	7	31
9-4	6-3	46	23.8	4.68		7	32
9-4 9-6	6-3 6-5	46 49	23.8	4.68 4.78	12.05 14.79	7	32 33
9-0 9-9	6-7	52	22.9	4.78	14.79	7	33
9-9 10-3	6-9	55	23.9	5.13	14.86	7	34
10-3	6-11	58	26.1	5.41	14.80	7	35
10-11	7-1	61	25.1	5.49	15.03	7	37
11-5	7-3	64	27.4	5.78	13.16	7	38
11-7	7-5	67	26.3	5.85	15.27	8	39
11-10	7-7	71	25.2	5.93	18.03	8	40
12-4	7-9	74	27.5	6.23	15.54	8	41
12-6	7-11	78	26.4	6.29	18.07	8	42
12-8	8-1	81	25.2	6.37	21.45	8	43
12-10	8-4	85	24.0	6.44	26.23	8	44
or sizes belo	w, consider us	ing pipe arch v	vith 31 in. corn	er radius if cov	er limits permi [.]	t. (See Table 2.2	9)
13-5	8-5	89	26.3	6.73	21.23	9	45
13-11	8-7	93	28.9	7.03	18.39	9	46
14-1	8-9	97	27.6	7.09	21.18	9	47
14-1	8-11	101	27.0	7.16	24.80	9	47
14-10	9-1	105	28.9	7.47	21.19	9	49
15-4	9-3	109	31.6	7.78	18.90	9	50
	9-5					10	
15-6 15-8	9-5 9-7	113 118	30.2 28.8	7.83 7.89	21.31 24.29	10	51 52
15-8	9-7 9-10	118	28.8	7.89	24.29 28.18	10	52 53
15-10 16-5	9-10 9-11	122	27.4 30.1	7.96 8.27	28.18	10	53 54
16-5	10-1	120	28.7	8.33	24.24	10	54 55
10-7				nufacturing tole			



Dimensions			La	yout Dimensio	ons	Periphery	
Span (ft-in.)	Rise (ft-in.)	Waterway Area (ft ²)	В (in.)	R _t (ft)	R _b (ft)	No. of Plates	Total N
13-3	9-4	97	38.5	6.68	16.05	8	46
13-6	9-6	102	37.7	6.78	18.33	8	47
14-0	9-8	105	39.6	7.03	16.49	8	48
14-2	9-10	109	38.8	7.13	18.55	8	49
14-5	10-0	114	37.9	7.22	21.38	8	50
14-11	10-2	118	39.8	7.48	18.98	9	51
15-4	10-4	123	41.8	7.76	17.38	9	52
15-7	10-6	127	40.9	7.84	19.34	10	53
15-10	10-8	132	40.0	7.93	21.72	10	54
16-3	10-10	137	42.1	8.21	19.67	10	55
16-6	11-0	142	41.1	8.29	21.93	10	56
17-0	11-2	146	43.3	8.58	20.08	10	57
17-2	11-4	151	42.3	8.65	22.23	10	58
17-5	11-6	157	41.3	8.73	24.83	10	59
17-11	11-8	161	43.5	9.02	22.55	10	60
18-1	11-10	167	42.4	9.09	24.98	10	61
18-7	12-0	172	44.7	9.38	22.88	10	62
18-9	12-2	177	43.6	9.46	25.19	10	63
19-3	12-4	182	45.9	9.75	23.22	10	64
19-6	12-6	188	44.8	9.83	25.43	11	65
19-8	12-8	194	43.7	9.90	28.04	11	66
19-11	12-10	200	42.5	9.98	31.19	11	67
20-5	13-0	205	44.9	10.27	28.18	11	68
20-7	13-2	211	43.7	10.33	31.13	12	69



Structural plate horizontal ellipse — size and layout details
6 x 2 in corrugation — bolted seams

				Periphery		Inside	Radius		
Span	Rise	Area	Top or Bottom	Top or Bottom Side		Top or Bottom Side	Total	R _t	R _s
(ft-in.)	(ft-in.)	(ft ²)	N	N	N	Top Radius (ft)	Side Radiu (ft)		
7-4	5-6	31.3	8	5	26	4-6	2-2		
8-1	5-9	36.4	9	5	28	5-1	2-2		
8-10	6-0	41.4	10	5	30	5-8	2-2		
9-2	6-9	48.2	10	6	32	5-8	2-8		
9-7	6-4	46.7	11	5	32	6-3	2-2		
9-11	7-0	54.0	11	6	34	6-3	2-8		
10-4	6-7	52.2	12	5	34	6-10	2-2		
10-8	7-3	60.1	12	6	36	6-10	2-8		
11-0	8-0	68.2	12	7	38	6-10	3-2		
11-1	6-10	58.1	13	5	36	7-4	2-2		
11-4	7-6	66.4	13	6	38	7-4	2-8		
11-8	8-3	75.1	13	7	38	7-4	3-2		
12-0	8-11	84.1	13	8	42	7-4	3-7		
11-9	7-1	64.2	14	5	38	7-11	2-2		
12-1	7-10	73.0	14	6	40	7-11	2-8		
12-5	8-6	82.2	14	7	42	7-11	3-2		
12-9	9-2	91.7	14	8	44	7-11	3-7		
12-6	7-4	70.5	15	5	40	8-6	2-2		
12-10	8-1	79.9	15	6	42	8-6	2-8		
13-2	8-9	89.6	15	7	44	8-6	3-2		
13-6	9-6	99.6	15	8	46	8-6	3-7		
13-7	8-4	87.1	16	6	44	9-1	2-8		
13-11	9-0	97.3	16	7	46	9-1	3-2		
14-3	9-9	107.8	16	8	48	9-1	3-7		
14-7	10-5	118.7	16	9	50	9-1	4-1		
14-11	11-2	129.9	16	10	52	9-1	4-6		

		Periphe	ry	Clearan	ce Box (ft- in.)		Layout	Dimensio	ons (in.)	
Span : (ft-i		Waterway Area (ft ²)	N	НВ	нт	v	No. of Plates per Ring	Top Radius R _t	Side Radius R _s	Corner Radius R _c	Botte Radi R _b
5-8	5-9	27	24				6	27	53	18	FL
5-8	6-6	32	26				6	29	75	18	FI
5-9	7-4	36	28				6	28	95	18	Fl
5-10	7-8	38	29				7	30	112	18	FI
5-10	8-2	41	30				6	28	116	18	Fl
8-6	8-6	58	35	4-6	4-6	7-6	7	44	96	31	14
8-8	8-8	62	36	5-0	5-0	7-6	7	47	96	31	19
8-11	8-11	65	37	6-0	6-0	7-2	7	49	100	31	24
9-8	9-4	73	39	6-0	6-0	7-9	7	53	84	38	19
10-10	9-6	81	41	7-0	7-0	7-5	7	59	96	38	12
11-5	10-3	93	44	8-0	8-0	7-6	7	66	100	38	12
12-2	11 -0	107	47	10-0	8-0	8-0	8	68	93	38	13
12-11	11 -2	116	49	10-0	8-0	8-6	9	74	92	38	14
13-2	11-10	126	51	10-0	8-0	9-6	11	73	102	38	16
13-10	12-2	136	53	10-0	8-0	10-0	11	77	106	38	16
14-1	12-10	147	55	12-0	10-0	9-0	11	77	115	38	18
14-6	13-5	158	57	12-0	10-0	9-6	11	78	131	38	17
14-10	14-0	169	59	12-0	10-0	10-6	11	79	136	38	19
15-6	14-4	180	61	12-0	10-0	11-0	12	83	139	38	20
15-9	15-1	192	63	12-0	10-0	12-0	12	82	151	38	2
16-4	15-5	204	65	12-0	10-0	12-6	12	86	156	38	2
16-5	16-0	217	67	12-0	10-0	13-0	12	88	159	38	2
16-9	16-3	224	68	12-0	10-0	13-6	12	89	168	38	24
17-3	17-0	239	70	12-0	10-0	14-0	12	90	174	47	2
18-4	16-11	252	72	16-0	12-0	12-0	12	99	157	47	24
19-1	17-2	266	74	16-0	12-0	13-0	13	105	156	47	26
19-6	17-7	280	76	16-0	12-0	13-6	13	107	158	47	29
20-4	17-9	295	78	16-0	12-0	14-0	13	114	155	47	3

Structural plate arch — representat	tive sizes
6 x 2 in. corrugation — bolted sean	ns

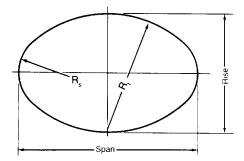
imensions ⁽¹⁾					Nominal Arc Length	
Span (ft)	Rise (ft-in.)	Waterway Area (ft ²)	Rise over Span	Radius (in.)	N ⁽²⁾	
5.0	1-9 1/2	6.5	0.36		8	
	2-2 1/2	8.5	0.44		9	
	2-7 1/2	10.5	0.49		10	
	3-0	12.4	0.60	30	11	
6.0	1-9 1/2	7.5	0.30	41	9	
	2-3 1/2	10.0	0.38	37 1/2	10	
	3-2	15.0	0.53	36	12	
	3-6	17.4	0.59	36	13	
7.0	2-4	12.0	0.34	45	11	
	2-10	15.0	0.40	43	12	
	3-8	20.0	0.52	42	14	
	4-1	23.1	0.58	42	15	
	4-5	25.7	0.63	42	16	
8.0	2-11	17.0	0.37	51	13	
	3-4	20.0	0.42	48 1/2	14	
	4-2	26.0	0.52	48	16	
	4-7	29.7	0.57	48	17	
	4-11	32.7	0.62	48	18	
9.0	2-11	18.5	0.32	59	14	
	3-10 1/2	26.5	0.43	54	16	
	4-8 1/2	33.0	0.52	54	18	
	5-1	37.1	0.57	54	19	
	5-6	40.5	0.61	54	20	
10.0	3-5 1/2	25.0	0.35	64	16	
	4-5	34.0	0.44	60 1/2	18	
	5-3	41.0	0.52	60	20	
	5-7	45.3	0.56	60	21	
	6-0	49.1	0.60	60	22	
	6-4	52.8	0.64	60	23	

(2) N = 3 Pi = 9.6 in.

Manufacturers may offer additional sizes.

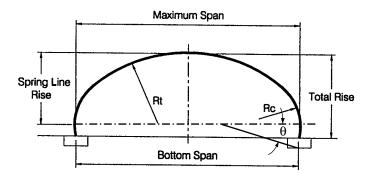
	Tab	e 2.	32 o	o n tin	ueď
--	-----	------	------	---------	-----

imensions ⁽¹⁾					Nominal Arc Length	
Span (ft)	Rise (ft-in.)	Waterway Area (ft ²)	Rise over Span	Radius (in.)	N ⁽²⁾	
11.0	3-6	27.5	0.32	73	17	
	4-5 1/2	37.0	0.41	67 1/2	19	
	5-9	50.0	0.52	66	22	
	6-1	54.3	0.56	66	23	
	6-6	58.5	0.59	66	24	
	6-11	62.7	0.63	66	25	
12.0	4-0 1/2	35.0	0.34	77 1/2	19	
	5-0	45.0	0.42	73	21	
	6-3	59.0	0.52	72	24	
	6-8	64.1	0.55	72	25	
	7-0	68.8	0.59	72	26	
	7-5	73.3	0.62	72	27	
13.0	4-1	38.0	0.32	86 1/2	20	
	5-1	49.0	0.39	80 1/2	22	
	6-9	70.0	0.52	78	26	
	7-2	74.8	0.55	78	27	
	7-6	79.8	0.58	78	28	
	7-11	84.8	0.61	78	29	
14.0	4-7 1/2	47.0	0.33	91	22	
1 110	5-7	58.0	0.40	86	24	
	7-3	80.0	0.52	84	28	
	7-8	86.2	0.55	84	29	
	8-1	91.7	0.58	84	30	
	8-10	102.3	0.63	84	32	
15.0	4-7 1/2	50.0	0.31	101	23	
15.0	5-8	62.0	0.38	93	25	
	6-7	75.0	0.44	91	27	
	79	92.0	0.52	90	30	
	8-2	98.5	0.52	90	31	
	8-7	104.4	0.55	90	32	
	9-4	115.8	0.62	90	34	
16.0	5-2	60.0	0.32	105	25	
10.0	5-2 7-1	86.0	0.32	97	29	
	8-3	105.0	0.43	96	32	
	8-8	111.6	0.52	96	33	
	8-8 9-6	124.0	0.54	96	35	
	9-10	130.1	0.59	96	36	
17.0	5-2 1/2	63.0	0.31	115	26	
17.0	7-2	92.0	0.42	103	30	
	8-10	1			34	
	8-10 9-2	119.0	0.52	102 102	34	
	9-2 10-0	125.5	0.54 0.59		35	
		138.7		102		
10.0	10-9	151.5	0.63	102	39	
18.0	5-9	75.0	0.32	119	28	
	7-8	104.0	0.43	109	32	
	8-11	126.0	0.50	108	35	
	9-9	140.2	0.54	108	37	
	10-6 11-3	154.3 167.9	0.58 0.63	108 108	39 41	


Notes: (1) Dimensions are to inside crests and are subject to manufacturing tolerances. (2) N = 3 Pi = 9.6 in.

Manufacturers may offer additional sizes.

	gation — bolte	d seams			
mensions ⁽¹⁾					Nominal Arc Lengt
Span (ft)	Rise (ft-in.)	Waterway Area (ft ²)	Rise over Span	Radius (in.)	N ⁽²⁾
19.0	6-4	87.0	0.33	123	30
	8-2	118.0	0.43	115	34
	9-5 1/2	140.0	0.50	114	37
	10-3	155.8	0.54	114	39
	11-0	170.6	0.58	114	41
	11-10	185.1	0.62	114	43
20.0	6-4	91.0	0.32	133	31
	8-3 1/2	124.0	0.42	122	35
	10-0	157.0	0.50	120	39
	10-9	172.1	0.54	120	41
	11-6	187.8	0.58	120	43
	12-8	210.5	0.64	120	46
21.0	6-11	104.0	0.33	137	33
	8-10	140.0	0.42	128	37
	10-6	172.0	0.50	126	41
	11-3	189.3	0.54	126	43
	12-5	213.8	0.59	126	46
	13-3	229.7	0.63	126	48
22.0	6-11	109.0	0.31	146	34
	8-11	146.0	0.40	135	38
	11-0	190.0	0.50	132	43
	11-9	207.2	0.54	132	45
	13-0	233.0	0.59	132	48
	13-9	249.7	0.62	132	50
23.0	8-0	134.0	0.35	147	37
	9-10	171.0	0.43	140	41
	11-6	208.0	0.50	138	45
	12-8	235.1	0.55	138	48
	13-6	253.0	0.59	138	50
	14-8	279.0	0.64	138	53
24.0	8-6	150.0	0.35	152	39
	10-4	188.0	0.43	146	43
	12-0	226.0	0.50	144	47
	13-2	255.1	0.55	144	50
	14-0 15-2	273.8 301.1	0.58 0.63	144 144	52 55
25.0	8-6 1/2	155.0	0.34	144	40
25.0	10-10 1/2	207.0	0.43	152	40
	12-6	207.0	0.43	152	45
	13-9	247.0	0.55	150	52
	13-9	275.9	0.58	150	52
	14-6	295.5 324.0	0.58	150	54
26.0	8-0 1/2	149.0	0.83	001	40
20.0	9-7	149.0	0.37		40
	9-7 10-11	214.0	0.37		45
	13-0	214.0 266.0	0.42		51
	14-3	200.0	0.55	156	54
	14-5	327.9	0.59	156	57
	15-5	327.9	0.59	156	60


(2) N = 3 Pi = 9.6 in.

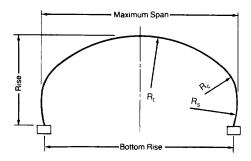
Manufacturers may offer additional sizes.

Structural plate long span horizontal ellipse — sizes and layout details	(1)
6 x 2 in. corrugation — bolted seams	

			F	Periphery ⁽²⁾		Inside	Radius
		Area	Top or Bottom	Side	Total	Rt	R _s
Span (ft-in.)	Rise (ft-in.)	(ft ²)	N	N	N	Top Radius (in.)	Side Radius (in.)
19-4	12-9	191	22	10	64	12-6	4-6
20-1	13-0	202	23	10	66	13-1	4-6
20-2	11-11	183	24	8	64	13-8	3-7
20-10	12-2	194	25	8	66	14-3	3-7
21-0	15-2	248	23	13	72	13-1	5-11
21-11	13-1	221	26	9	70	14-10	4-1
22-6	15-8	274	25	13	76	14-3	5-11
23-0	14-1	249	27	10	74	15-5	4-6
23-3	15-11	288	26	13	78	14-10	5-11
24-4	16-11	320	27	14	82	15-5	6-4
24-6	14-8	274	29	10	78	16-6	4-6
25-2	14-11	287	30	10	80	17-1	4-6
25-5	16-9	330	29	13	84	16-6	5-11
26-1	18-2	369	29	15	88	16-6	6-10
26-3	15-10	320	31	11	84	17-8	4-11
27-0	16-2	334	32	11	86	18-3	4-11
27-2	19-1	405	30	16	92	17-1	7-3
27-11	19-5	405	31	16	94	17-8	7-3
28-1	19-5	369	33	10	90	18-10	5-5
28-10	17-1	384	34	12	90	19-5	5-5
29-5	19-11	455	33	12	92	18-10	J-J 7-3
29-5 30-1	20-2	435	34	16	100	19-5	7-3 7-3
30-1	17-11	472	36	10	96	20-7	7-5 5-5
30-3 31-2	21-2	512	35	12	104	20-7	5-5 7-9
31-2 31-4	18-11	454	35	17	104	20-0	7-9 5-11
32-1	19-2	471	38	13	102	21-8	5-11
32-3	22-2	555	36	18	108	20-7	8-2
33-0	22-5	574	37	18	110	21-1	8-2
33-2	20-1	512	39	14	106	22-3	6-4
34-1	23-4	619	38	19	114	21-8	8-8
34-7	20-8	548	41	14	110	23-5	6-4
34-11	21-4	574	41	15	112	23-5	6-10
35-1	24-4	665	39	20	118	22-3	9-1
35-9	25-9	718	39	22	122	22-3	10-0
36-0	22-4	619	42	16	116	24-0	7-3
36-11	25-7	735	41	21	124	23-5	9-7
37-2	22-2	631	44	15	118	25-2	6-10
38-0	26-7	785	44	22	128	24-0	10-0
38-8	27-11	843	42	24	132	24-0	10-11
40-0	29-7	927	43	26	138	27-11	11-10
(2) N	mensions are to = 3 Pi = 9.6 in. Jfacturers may o		nd are subject to r	manufacturing	g tolerances.		

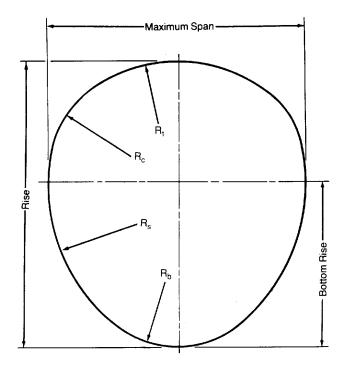
Structural plate long span low profile arch — sizes and layout details (1) 6 x 2 in. corrugation — bolted seams

	confugation			Pe	riphery ⁽²⁾		Inside	Radius
Max. Span	Bottom Span	Total Rise	Area	Тор	Side	Total	R _t	R _s
(ft-in.)	(ft-in.)	(ft-in.)	(ft ²)	N	N	N	Top Radius (in.)	Side Radius (in.)
20-1	19-10	7-6	121	23	6	35	13-1	4-6
19-5	19-1	6-10	105	23	5	33	13-1	3-7
21-6	21-4	7-9	134	25	6	37	14-3	4-6
22-3	22-1	7-11	140	26	6	38	14-0	4-6
23-0	22-9	8-0	147	27	6	39	15-5	4-6
23-9	23-6	8-2	154	28	6	40	16-0	4-6
24-6	24-3	8-4	161	29	6	41	16-6	4-6
25-2	25-0	8-5	169	30	6	42	17-1	4-6
25-11	25-9	8-7	176	31	6	43	17-8	4-6
27-3	27-1	10-0	217	31	8	47	17-8	6-4
28-1	27-11	9-7	212	33	7	47	18-10	5-5
28-9	28-7	10-3	234	33	8	49	18-10	6-4
28-10	28-8	9-8	221	34	7	48	19-5	5-5
30-3	30-1	9-11	238	36	7	50	20-7	5-5
30-11	30-9	10-8	261	36	8	52	20-7	6-4
31-7	31-2	12-1	309	36	10	56	20-7	7-3
31-0	30-10	10-1	246	37	7	51	21-1	5-5
32-4	31-11	12-3	320	37	10	57	21-1	7-3
31-9	31-7	10-3	255	38	7	52	21-8	5-5
33-1	32-7	12-5	330	38	10	58	21-8	7-3
33-2	33-0	11-1	289	39	8	55	22-3	6-4
34-5	34-1	13-3	377	39	11	61	22-3	8-2
34-7	34-6	11-4	308	41	8	57	23-5	6-4
37-1	37-7	15-8	477	41	14	69	23-5	10-11
35-4	35-2	11-5	318	42	8	58	24-0	6-4
38-8	38-4	15-9	490	42	14	70	24-0	10-11
Notes: (1) Dimensions are to inside crests and are subject to manufacturing tolerances. (2) N = 3 Pi = 9.6 in. Manufacturers may offer additional sizes.								



Low profile arch with concrete and bin-type retaining wall end treatment.

Long span high profile arch with concrete and bin-type retaining wall headwall.


Structural plate long span high profile arch — sizes and layout details (1)
6 x 2 in. corrugation — bolted seams

					Peripher	y ⁽²⁾		Ir	side Radi	us
Max. Span	Bottom Span	Total Rise	Area	Тор	Upper Side	Lower Side	Total	Тор	Upper Side	Lower Side
(ft-in.)	(ft-in.)	(ft-in.)	(ft ²)	N	N	N	Ν	(ft-in.)	(ft-in.)	(ft-in.)
20-1	19-6	9-1	152	23	5	3	39	13-1	4-6	13-1
20-8	18-10	12-1	214	23	6	6	47	13-1	5-5	13-1
21-6	19-10	11-8	215	25	5	6	47	14- 3	4-6	14-3
22-10	19-10	14-7	285	25	7	8	55	14-3	6-4	14-3
22- 3	20-7	11-10	225	26	5	6	48	14-10	4- 6	14-10
22-11	20-0	14-0	276	26	6	8	54	14-10	5-5	14-10
23-0	21-5	12-0	235	27	5	6	49	15-5	4- 6	15-5
24- 4	21-6	14-10	310	27	7	8	57	15-5	6-4	15-5
23-9	22-2	12-1	245	28	5	6	50	16-0	4-6	16-0
24- 6	21-11	13-9	289	29	5	8	55	16-6	4- 6	16-6
25-9	23-2	15-2	335	29	7	8	59	16-6	6-4	16-6
25-2	23-3	13-2	283	30	5	7	54	17- 1	4- 6	17-1
26-6	24-0	15-3	348	30	7	8	60	17- 1	6-4	17-1
25-11	24- 1	13-3	295	31	5	7	55	17- 8	4- 6	17-8
27-3	24-10	15-5	360	31	7	8	61	17- 8	6-4	17-8
27-5	25-8	13-7	317	33	5	7	57	18-10	4-6	18-10
29-5	27-1	16-5	412	33	8	8	65	18-10	7-3	18-10
28-2	25-11	14- 5	349	34	5	8	60	19-5	4- 6	19-5
30-1	26-9	18- 1	467	34	8	10	70	19-5	7-3	19-5
30- 3	28-2	15-5	399	36	6	8	64	20- 7	5-5	20-7
31-7	28-4	18-4	497	36	8	10	72	20-7	7-3	20-7
31-0	29-0	15-7	413	37	6	8	65	21-1	5-5	21-1
31-8	28-6	17-9	484	37	7	10	71	21-1	6-4	21-1
32-4	27-11	19-11	554	37	8	12	77	21-1	7-3	21-1
31-9	28-8	17-3	470	38	6	10	70	21-8	5-5	21-8
33-1	28-9	20-1	571	38	8	12	78	21-8	7-3	21-8
32-6	29-6	17-4	484	39	6	10	71	22-3	5-5	22-3
33-10	29-7	20-3	588	39	8	12	79	22- 3	7-3	22-3
34-0	31-2	17-8	514	41	6	10	73	23- 5	5-5	23-5
34- 7	30-7	19-10	591	41	7	12	79	23- 5	6-4	23-5
35-3	30- 7	21-3	645	41	8	13	83	23-5	7-3	23-5
37-3	32-6	23-5	747	41	11	13	89	23-5	10-0	23-5
34-8	31-11	17-10	529	42	6	10	74	24- 0	5-5	24-0
35-4	31-5	20- 0	608	42	7	12	80	24- 0	6-4	24-0
36-0	31-5	21-5	663	42	8	13	84	24-0	7-3	24-0
38- 0	33- 5	23-6	767	42	11	13	90	24- 0	10- 0	24- 0

(2) N = 3 Pi = 9.6 in.

Manufacturers may offer additional sizes.

67

30-0

30-0

29-8

31-2

20-0

19-11

Structural plate long span pear shape — sizes and layout details ⁽¹⁾ 6 x 2 in. corrugation — bolted seams												
					Pe	riphery	(2)			Ins	ide Radiu	us
Max. Span	Rise	Bottom Rise	Area	Тор	Corner	Side	Bottom	Total	Bottom	Side	Corner	Тор
(ft-in.)	(ft-in.)	(ft-in.)	(ft ²)	Ν	N	Ν	N	N	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)
23-8	25-8	14-11	481	25	5	24	15	98	8-11	16-7	6-3	14-8
24-0	25-10	15-1	496	22	7	22	20	100	9-11	17-4	7-0	16-2
25-6	25-11	15-10	521	27	7	20	21	102	10-7	18-1	6-11	15-10
24-10	27-8	16-9	544	27	5	25	18	105	9-3	19-8	5-9	15-11
27-5	27-0	18-1	578	30	6	26	16	110	9-7	20-4	4-7	19-11
26-8	28-3	18-0	593	28	5	30	12	110	8-0	20-1	4-9	20-11
28-1	27-10	16-10	624	27	8	22	25	112	12-2	19-0	7-3	20-5
28-7	30-7	19-7	689	32	7	24	24	118	11-2	24-0	7-0	18-2

8

7

23

24

25

26

119 11-11

122 12-1

24-0

24-0

6-7

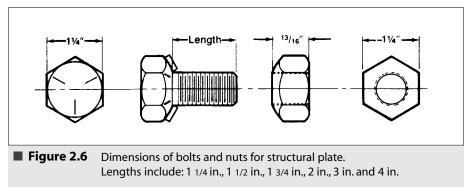
7-0

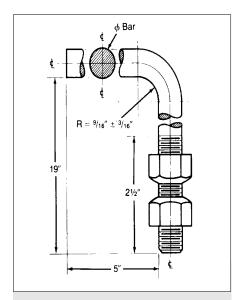
21-10

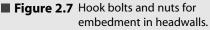
19-3

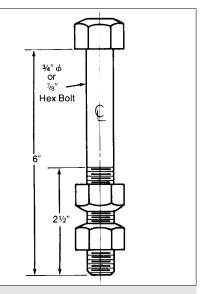
Notes: (1) Dimensions are to inside crests and are subject to manufacturing tolerances. (2) N = 3 Pi = 9.6 in. Manufacturers may offer additional sizes.

32


34


699

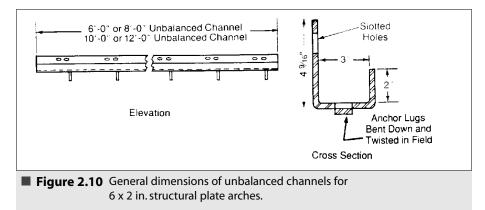

736


Bolts and Nuts

Galvanized 3/4 inch or 7/8 inch diameter bolts of special heat-treated steel meeting ASTM Specification A 449 or ASTM Specification F568 Class 8.8, are used to assemble structural plate sections. Galvanized nuts meet the requirements of ASTM A 563 Class C. The galvanizing on bolts and nuts must meet ASTM Specification A 153, Class C or ASTM B 695 Class 55 Type II. See Figure 2.6 for dimensions of bolts and nuts. Lengths include: 1 1/4, 1 1/2, 1 3/4, 2, 3 and 4 inches. The containers and bolts may be color coded for ease in identification. These are designed for fitting either the crest or valley of the corrugations, and to give maximum bearing area and tight seams without the use of washers. Power wrenches are generally used for bolt tightening, but simple hand wrenches are satisfactory for small structures.

Figure 2.8 Straight anchor bolt.

Corrugated Steel Pipe Design Manual


Anchor bolts are available for anchoring the sides of structural plate arches into footings, and the ends of structural plate pipe into concrete end treatments Material for these special 3/4 inch or 7/8 inch bolts must conform to ASTM Specification A 307, and nuts to ASTM A 563 Grade C. Galvanizing of anchor bolts and nuts must conform to ASTM A 153.

■ Figure 2.9 High-strength steel bolts are used for the circumferential and longitudinal seams of structural plate pipe. Four, six, or eight bolts per foot of longitudinal seam provide the strength required for the loading conditions.

Arch Channels

For arch seats, galvanized unbalanced channels are available for anchoring the arch to concrete footings. The unbalanced channel is anchored to the footing either by anchor bolts or by integral lugs that are bent and twisted as shown in Figure 2.10.

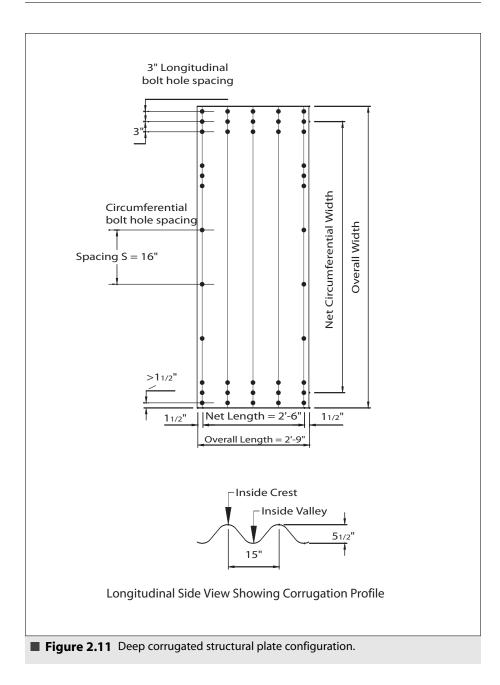
DEEP CORRUGATED STRUCTURAL PLATE

Deep corrugated structural plate pipe is also a bolted structure. It has either a $15 \times 5 \frac{1}{2}$ inch corrugation (DCSP Type I) or a 16×6 inch corrugation (DCSP Type II). As with standard (6×2 inches) structural plate, the corrugations are at right angles to the length of the structure. The length of a plate is measured in a direction parallel to the length of the structure. The width of a plate is, therefore, measured in a direction that is perpendicular to the length of the structure, around the periphery or circumference of the structure.

DEEP CORRUGATED STRUCTURAL PLATE TYPE I

Product Description

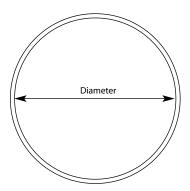
Deep corrugated structural plate pipe Type I has a 15 x 5 1/2 in. corrugation, which is shown in Figure 2.1. Standard plates are fabricated in one length and 12 different widths, as shown in Table 2.37 and Figure 2.11. The coverage length (excluding the side laps) is 30 inches The plate width designation, S, is used to describe the various plate widths available. S is the distance between circumferential bolt holes, or one circumferential bolt hole space (circumferential refers to the direction around the periphery of the structure, at right angles to the length of the structure). For instance, a 5 S plate has a net width of 5 circumferential bolt hole space, S, is 16 inches.


Plates are furnished curved to various radii and are clearly identified and located on the assembly drawings provided by the fabricator for field erection. The plates are available in 0.140 to 0.315 inch thicknesses. Weights of individual plate sections are shown in Table 2.38.

Section Properties

Section properties, used for design, are provided in Table 2.14. Properties of the arc-andtangent corrugation are derived mathematically using the design thickness. The properties in the table include area, moment of inertia, section modulus and radius of gyration.

Sizes and Shapes


The plates are assembled into various shapes as indicated in Tables 2.39 through 2.41. The shapes include round, single-radius arch, multi-radius arch, and box culvert. Special shapes, and other standard shape sizes not shown in the tables, are also available. See Figures 2.12 - 2.14 for additional details. Detailed assembly instructions accompany each structure.

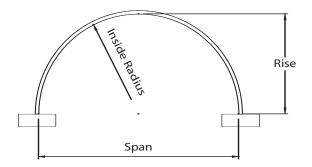
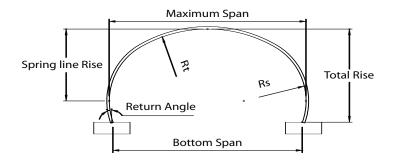

Table 2.3715 x 5 1/2 in. deep corrugated structural plate sectionsDetails of uncurved plates						
Nominal Plate Width Designation, *S	Net Width, in.	Overall Width, in.	No. of Circumferential Bolt Holes			
15	16	25	2			
25	32	41	3			
35	48	57	4			
4S	64	73	5			
55	80	89	6			
6S	96	105	7			
7S	112	121	8			
85	128	137	9			
95	144	153	10			
105	160	169	11			
115	176	185	12			
125	192	201	13			

Plate Width	Net		Approx. Wt. Of Individual Galvanized Plates Without Bolts, in Pounds					
Designation,	Length, ft			Specified Th				Assembly
*S		0.140	0.170	0.188	0.218	0.249	0.280	Bolts/Plate
15	2.5	45	54	60	71	81	91	14
25	2.5	73	88	98	116	132	149	15
35	2.5	102	122	136	161	184	207	16
4S	2.5	130	156	174	206	235	265	17
5S	2.5	159	190	212	251	286	323	18
6S	2.5	187	224	250	296	338	381	19
7S	2.5	216	258	287	341	389	439	20
85	2.5	244	292	325	385	440	497	21
95	2.5	272	326	363	430	492	555	22
105	2.5	301	360	401	475	543	613	23
115	2.5	329	394	439	520	594	671	24
125	2.5	358	428	477	565	646	729	25
Notes: 1 Bolts are color coded for the different lengths. 2 Weight of bolts in pounds per hundred pieces: 2 in. = 59.5 3 in. = 72.5 4 in. = 85.5								
 To compute the approximate weight of structures per foot of length: (1) multiply the number of plates in the periphery by the plate weights from the table; (2) add weight of the bolts; (3) Divide by plate length. 								

Corrugated Steel Pipe Design Manual


Structural plate long span rour 15 x 5 1/2 in. corrugation — bo		
Inside Diameter ft - in.	Periphery S*	End Area ft ²
27 - 6	66	596
28 - 4	68	634
29 - 3	70	672
30 - 1	72	712
30 - 11	74	752
31 - 9	76	794
32 - 7	78	837
33 - 5	80	881
34 - 4	82	926
35 - 2	84	973
36 - 0	86	1020
36 - 10	88	1069
37 - 8	90	1119
39 - 5	94	1221
41 - 1	98	1329
42 - 10	102	1441
44 - 6	106	1557
46 - 2	110	1678
47 - 11	114	1804
49 - 7	118	1934
51 - 3	122	2069
Note: 1. All dimensions are to the inside 2. Other sizes are available. 3. All structures should be reviewe	crest and subject to manufacturing d based on live load and geotechnic	

	d Arches — Sizes an rugation profile — b			
Span (ft-in.)	Total Rise (ft-in.)	End Area (ft ²)	Inside Radius (ft-in.)	Total S*
22' 11"	11' 5"	207	11' 5"	27
23' 9"	11' 11"	222	11'11"	28
24' 8"	12' 4"	238	12' 4"	29
25' 1"	12' 6"	255	12' 9"	30
26' 4"	13' 2"	272	13' 2"	31
27' 2"	13' 7"	291	13' 7"	32
28' 1"	14' 0"	309	14' 0"	33
28' 10"	14' 5"	327	14' 5"	34
29' 9"	14' 10"	347	14' 10"	35
30' 7"	15' 3"	367	15' 3"	36
31' 5"	15' 9"	387	15' 9"	37
32' 3"	16' 2"	409	16' 2"	38
33' 2"	16' 6"	431	16" 7"	39
34' 0"	17' 0"	453	17' 0"	40
35' 8"	17' 10"	499	17' 10"	42
37' 4"	18' 8"	548	18' 6"	44
39' 1"	19' 6"	600	19' 6"	46
40' 9"	20' 4"	652	20' 4"	48
42' 6"	21' 3"	708	21' 3"	50
44' 2"	22' 1"	765	22' 1"	52
45' 10"	22' 11"	826	22' 11"	54
49' 3"	24' 11"	953	24' 7"	58
50' 11"	25' 6"	1019	25' 6"	60
52' 8"	26' 4"	1088	26' 4"	62
54' 8"	27' 2"	1159	27' 2"	64
56' 6"	28' 4"	1234	28' 3"	66
57' 8"	28' 10"	1309	28' 10"	68
59' 5"	29'9"	1387	29' 9"	70
62' 10"	31' 5"	1677	31' 5"	74
66' 3"	33' 1"	1722	33' 2"	78
67' 11"	34' 0"	1812	34' 0"	80
69' 7"	34' 10"	1903	34' 9"	82
73' 0"	36' 6"	2094	36' 6"	86
74' 8"	37' 4"	2191	37' 4"	88
78' 9"	39' 6"	2448	39' 4"	93
82' 0"	41' 0"	2641	41' 0"	96

2. Other sizes are available. 3. All structures should be reviewed based on live load and geotechnical conditions. Chapter 2

*S = 16 in.

	plate multi-ra in. corrugatio			d layout detai	ls		
Max Span (ft-in.)	Bottom Span (ft-in.)	Total Rise (ft-in.)	End Area (ft ²)	Inside Radius Side (in.)	Inside Radius Crown (in.)	Return Angle degrees	Total S*
26' 3"	26' 3"	11'9"	253.3	135	391	2.3	30
29' 6"	29'6"	12' 4"	303.0	135	391	0	33
29' 3"	28'7"	16' 11"	437.8	135	391	9.6	40
31' 2"	31'0"	13' 0"	339.5	135	391	6.5	35
32' 10"	32' 8"	13' 0"	356.7	135	391	5.7	36
32' 10"	31' 11"	14' 11"	419.0	135	391	15.6	39
32' 10"	31'9"	17' 7"	506.5	135	391	10.1	43
34' 5"	34' 4"	13'9"	374.0	135	391	4.8	37
36' 1"	35' 11"	13' 9"	414.7	135	391	10.1	39
36' 1"	35' 1"	15' 8"	482.9	135	391	0	42
36' 1"	35' 3"	19' 3"	605.7	147	391	10.1	47
37' 9"	37' 7"	13' 10"	433.3	135	391	6.1	40
39' 4"	39' 3"	14' 0"	452.3	135	391	5	41
39' 4"	38' 8"	18' 6"	614.6	174	391	12.8	47
39' 4"	38' 0"	20' 0"	685.4	147	391	11.3	50
41' 0"	40' 10"	14' 9"	497.9	135	391	7.2	43
42' 8"	42' 6"	14' 11"	518.6	135	391	5.9	44
42' 8"	41' 10"	19' 4"	693.1	174	391	13.8	50
42' 8"	41' 6"	21' 2"	775.7	163	391	10.6	53
44' 3"	44' 2"	15' 2"	539.5	135	391	4.5	45
45' 11"	45' 10"	16' 0"	590.7	135	391	0	47
45' 11"	45' 6"	21'6"	817.1	214	391	0	54
45' 11"	44' 9"	23' 0"	899.5	178	391	10.9	57
47' 7"	47' 4"	16' 11"	644.4	135	391	8	49
49' 3"	49' 1"	17' 2"	669.0	135	391	6.2	50
49' 3"	48' 6"	23' 0"	939.9	214	391	11.6	58
49' 3"	48' 1"	24' 1"	999.9	186	391	10.6	60
50' 10"	50' 8"	18' 1"	727.1	135	391	7.5	52
52' 6"	52' 4"	16' 2"	693.9	135	548	7.5	52
52' 6"	52' 1"	21' 10"	962.4	214	548	8.9	59
52' 6"	51' 0"	26' 2"	1195.9	194	548	10.4	66
54' 2"	53' 10"	16' 11"	751.1	135	548	9.5	54
55' 9"	55' 7"	17' 2"	775.2	135	548	8.2	55
55' 9"	55' 6"	22' 1"	1022.1	214	548	7.6	61
55' 9"	54' 0"	27' 10"	1345.2	202	548	11.1	70

Note: 1. All dimensions are to the inside crest and subject to manufacturing tolerances.

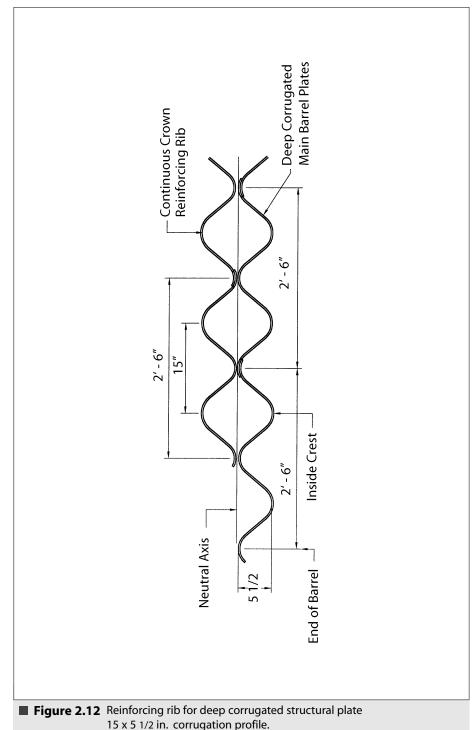
2. Other sizes are available.

*S = 16 in.

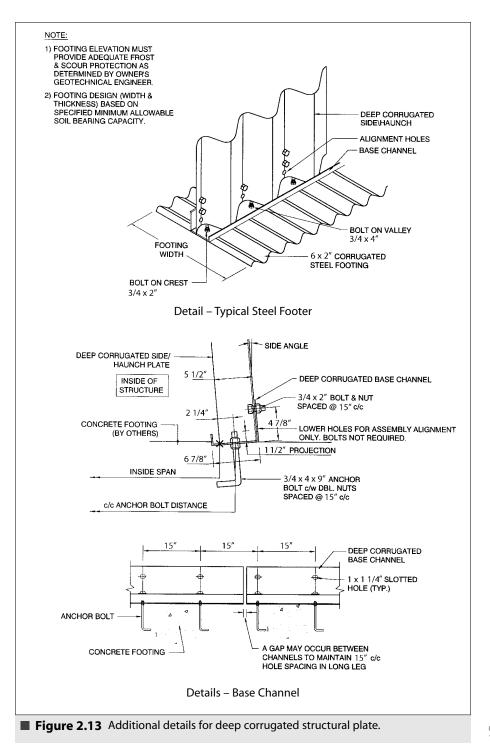
3. All structures should be reviewed based on live load and geotechnical conditions.

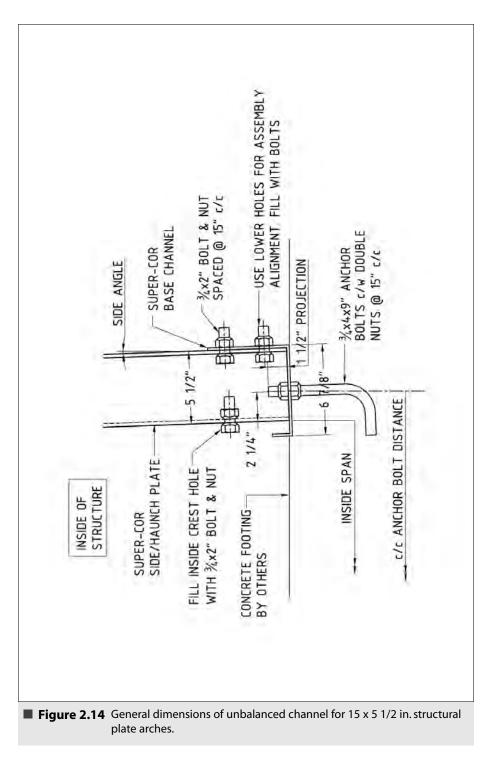
Table 2	Table 2.41 continued							
	Structural plate multi-radius arches — size and layout details 15 x 5-1/2 in. corrugations — bolted seams							
Max Span (ft-in.)	Bottom Span (ft-in.)	Total Rise (ft-in.)	End Area (ft ²)	Inside Radius Side (in.)	Inside Radius Crown (in.)	Return Angle degrees	Total S*	
57' 5"	57' 3"	17' 4"	799.6	135	548	6.8	56	
59' 1"	58' 10"	18' 2"	862.6	135	548	8.7	58	
59' 1"	58' 8"	23' 0"	1121.2	214	548	8.3	64	
60' 8"	60' 6"	18' 5"	889.0	135	548	7.1	59	
62' 4"	62' 1"	19' 4"	956.0	135	548	8.8	61	
62' 4"	62' 1"	23' 3"	1185.1	214	548	6.7	66	
64' 0"	63' 10"	19' 7"	984.4	135	548	7.1	62	
65' 7"	65' 4"	20' 6"	1055.9	135	548	8.6	64	
65' 7"	65' 4"	24' 4"	1293.5	214	548	7	69	
67' 3"	67' 1"	20' 10"	1086.5	135	548	6.6	65	
68' 11"	68' 6"	27' 9"	1553.5	253	548	7.4	75	
70' 6"	70' 4"	22' 9"	1240.4	135	548	8.8	69	
72' 2"	71'11"	19' 5"	1121.5	135	745	8.6	68	
72' 2"	71'10"	26' 9"	1607.2	253	745	7.7	77	
73' 10"	73' 5"	20' 3"	1202.0	135	745	10.5	70	
75' 5"	75' 1"	22' 10"	1394.2	174	745	8.9	74	
75' 5"	74'11"	29' 3"	1837.1	273	745	8.9	82	
77' 0"	76' 10"	23' 0"	1426.6	174	745	7.8	75	
78' 9"	78' 4"	23' 10"	1510.6	174	745	9.3	77	
78' 9"	78' 4"	29' 6"	1918.0	273	745	7.8	84	
80' 5"	80' 0"	24' 0"	1545.0	174	745	8.1	78	
82' 0"	81' 10"	24' 4"	1580.0	174	745	6.9	79	
82' 0"	81'6"	30' 6"	2053.2	273	745	8.2	87	
83' 8"	83' 4"	25' 2"	1669.4	174	745	8.2	81	

Note: 1. All dimensions are to the inside crest and subject to manufacturing tolerances.


2. Other sizes are available.

3. All structures should be reviewed based on live load and geotechnical conditions.


^{*}S = 16 in.



35 foot span by 15 foot rise deep corrugated structural plate arch with beveled ends for a Fish Passage Project in the Willamette National Forest in Oregon.

Corrugated Steel Pipe Design Manual

DEEP CORRUGATED STRUCTURAL PLATE TYPE II

Product Description

Deep corrugated structural plate Type II has a 16 x 6 inch corrugation, which is shown in Figure 2.1.

Standard plates are fabricated in one length and several widths, as shown in Table 2.42 and Figure 2.15. The coverage length (excluding the side laps) is 47 1/4 inches The plate width designation, H, is used to describe the various plate widths available. H is the distance between circumferential bolt holes, or one circumferential bolt hole space (circumferential refers to the direction around the periphery of the structure, at right angles to the length of the structure). For instance, a 9 H plate has a net width of 9 circumferential bolt hole spaces (see Figure 2.15). The bolt hole space, H, is 16 3/4 inches.

Plates are furnished curved to various radii and are identified with a permanent mark. This marking is provided to simplify field erection and to make identification of the structure details, in the future, as easy as possible. The fabricator provides field assembly drawings to guide the installer. The plates are available in thickness ranging from 0.169 to 0.315 inches Weights of individual plate sections are shown in Table 2.42.

Table 2	Table 2.42								
Weight of	Weight of 16 x 6 in. deep corrugated structural plate sections								
Plate Width Designation,	Net Length	Арр	Approx. Wt. Of Individual Galvanized Plates Without Bolts, in Pounds						
Ϋ́Η΄	ft	Specified Thickness, in.					Assembly		
('H'=16.75")		0.169	0.197	0.236	0.276	0.315	Bolts/Plate		
4	3.94	239	282	341	398	451	23		
5	3.94	291	342	415	484	548	24		
6	3.94	342	402	488	569	645	25		
7	3.94	394	463	561	655	742	26		
8	3.94	445	523	634	740	839	27		
9	3.94	496	584	708	825	936	28		
10	3.94	548	644	781	911	1033	29		

Notes: 1. Bolt lengths used for all structures = 2''

2. Weight of bolts and nuts in pounds per hundred = 59.5 lbs.

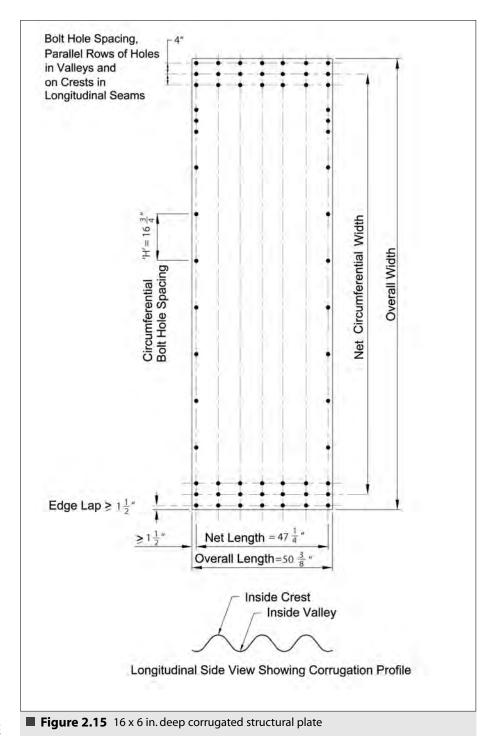
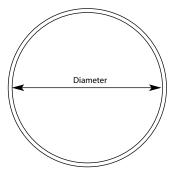

3. To compute the approximate weight of structure per foot of length: (1) Multiply the number of plates in the periphery by the plate weights in the table; (2) add weight of bolts; (3) divide by the net plate length.

Table 2.43

16 x 6 in. deep corrugated structural plate sections Details of uncurved plates						
Nominal Plate Width Designation, 'H'*	Net Width, in.	Overall Width, in.	No. of Circumferential Bolt Holes			
3H	50.2	61.22	4			
4H	66.93	77.95	5			
5H	83.67	94.69	6			
6H	100.40	111.42	7			
7H	117.13	128.15	8			
8H	133.86	144.88	9			
9H	150.59	161.61	10			
10H	167.32	178.35	11			

Note: DCSP Type II is a metric profile. Values shown are hard converted on the basis 1.0 in. = 25.4 mm *'H' = 16.75 in.

Corrugated Steel Pipe Design Manual



Section Properties

Section properties, used for design, are provided in Table 2.15. Properties of the arc-and-tangent corrugation are derived mathematically using the design thickness. The properties in the table include area, moment of inertia, section modulus and radius of gyration.

Sizes and Shapes

The plates are assembled into various shapes as indicated in Tables 2.44 through 2.46. The shapes include round, single-radius arch, two radius arches, and box culverts. Special shapes, and other standard shape sizes not shown in the tables, are also available. See Figures 2.16 - 2.18 for additional details. Detailed assembly instructions accompany each structure.

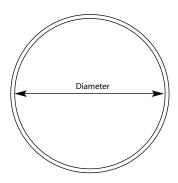


Table 2.44						
Structural plate corrugated steel pipe 16 x 6 in. corrugations — bolted seams						
Inside Diameter ft - in.	Total Periphery H*	End Area ft ²				
19 - 11	46	312				
20 - 10	48	340				
21 - 8	50	370				
22 - 7	52	401				
23 - 6	54	433				
24 - 4	56	466				
25 - 3	58	501				
26 - 2	60	537				
27 - 0	62	574				
27 - 11	64	612				
28 - 10	66	652				
29 - 8	68	692				
30 - 7	70	734				
31 - 6	72	778				
32 - 4	74	822				
33 - 3	76	868				
34 - 1	78	915				

^{*}H = 16.75 in.

Notes: 1. All dimensions are to the inside crest and are subject to manufacturing tolerances. 2. Sizes are representative, other sizes may be available, contact your manufacturer.

Corrugated Steel Pipe Design Manual

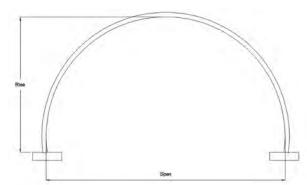
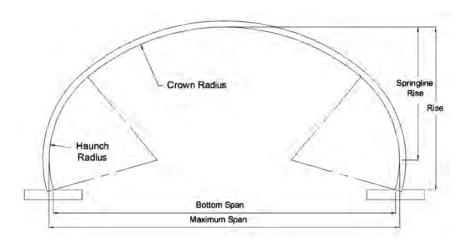
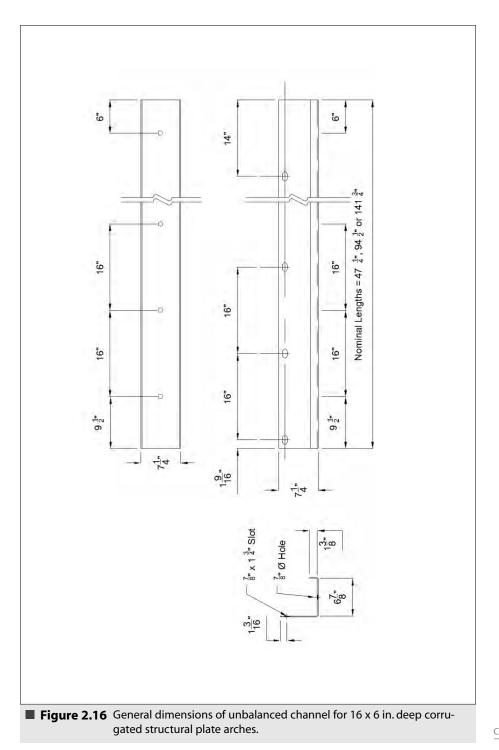


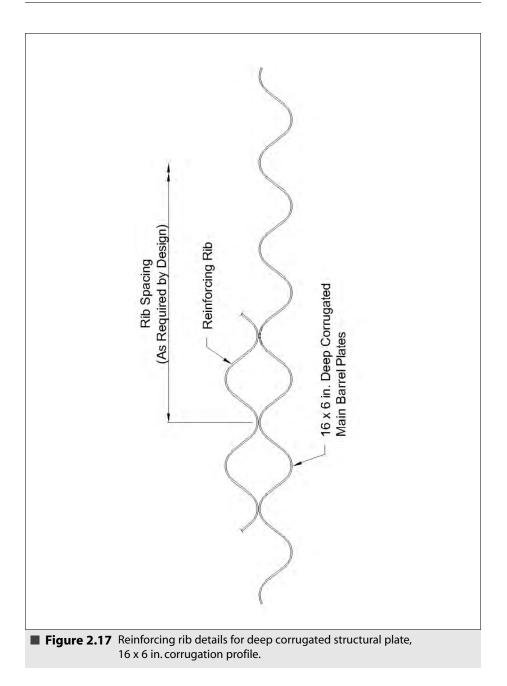
Table 2.44 continued

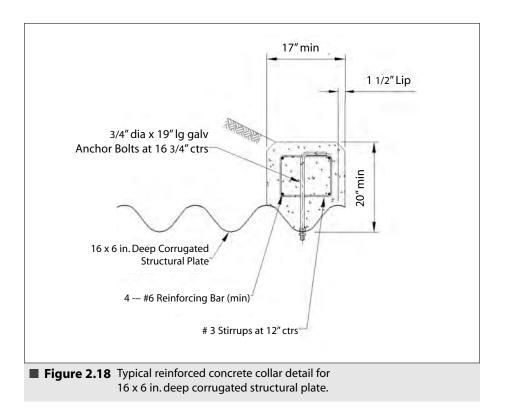
Structural plate corrugated steel pipe 16 x 6 in corrugations — bolted seams


To x o in corrugations — bolted seams							
Inside Diameter ft - in.	Total Periphery H*	End Area ft ²					
35 - 0	80	963					
35 - 11	82	1012					
36 - 10	84	1063					
37 - 8	86	1115					
38 - 7	88	1168					
39 - 5	90	1223					
40 - 4	92	1278					
41 - 3	94	1335					
42 - 1	96	1393					
43 - 0	98	1452					
43 - 11	100	1513					
44 - 9	102	1575					
45 - 8	104	1638					
46 - 7	106	1702					
47 - 5	108	1768					
48 - 4	110	1834					
49 - 3	112	1902					
50 - 1	114	1972					
51 - 0	116	2042					
51 - 11	118	2114					

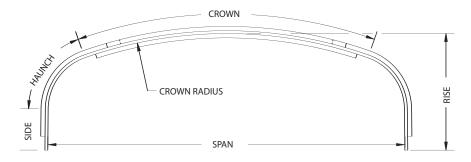
*H = 16.75 in.
Notes: 1. All dimensions are to the inside crest and are subject to manufacturing tolerances.
2. Sizes are representative, other sizes may be available, contact your manufacturer.




Table 2.45 Structural plate single-radius arches — size and layout details 16 x 6 in. corrugations — bolted seams Span Rise ft-in. End Area ft ² Inside Radius in. Total Periphery H* 26 - 3 12 - 10 262.2 157 29 27 - 1 13 - 3 280.5 162 30 27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36 32 - 10 16 - 6 425.9 197 37
16 x 6 in. corrugations — bolted seams Span ft-in. Rise ft-in. End Area ft ² Inside Radius in. Total Periphery H* 26 - 3 12 - 10 262.2 157 29 27 - 1 13 - 3 280.5 162 30 27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
16 x 6 in. corrugations — bolted seams Span ft-in. Rise ft-in. End Area ft ² Inside Radius in. Total Periphery H* 26 - 3 12 - 10 262.2 157 29 27 - 1 13 - 3 280.5 162 30 27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ft-in.ft-in.ft2in.H*26 - 312 - 10262.21572927 - 113 - 3280.51623027 - 1113 - 9299.41673128 - 814 - 2319.01723229 - 614 - 8339.21773330 - 415 - 1359.91823431 - 215 - 7381.41873531 - 1216 - 1403.319236
26 - 3 12 - 10 262.2 157 29 27 - 1 13 - 3 280.5 162 30 27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
27 - 1 13 - 3 280.5 162 30 27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
27 - 113 - 3280.51623027 - 1113 - 9299.41673128 - 814 - 2319.01723229 - 614 - 8339.21773330 - 415 - 1359.91823431 - 215 - 7381.41873531 - 1216 - 1403.319236
27 - 11 13 - 9 299.4 167 31 28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
28 - 8 14 - 2 319.0 172 32 29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
29 - 6 14 - 8 339.2 177 33 30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
30 - 4 15 - 1 359.9 182 34 31 - 2 15 - 7 381.4 187 35 31 - 12 16 - 1 403.3 192 36
31 – 12 16 - 1 403.3 192 36
31 – 12 16 - 1 403.3 192 36
32 - 10 $10 - 0$ 423.9 197 37
33 - 8 16 - 12 449.2 202 38
34 - 5 17 - 5 473.1 207 39
35 - 3 17 - 11 497.5 212 40
36 - 1 18 - 4 522.6 217 41
36 - 11 18 - 10 548.3 221 42
37 - 9 18 - 7 548.6 226 42
38 - 7 19 - 1 575.0 231 43
39 - 4 19 - 6 602.0 236 44
40 - 2 19 - 12 629.6 241 45
41 - 0 20 - 5 657.8 246 46
41 - 10 20 - 11 686.6 251 47
42 - 8 21 - 4 716.0 256 48
43 - 6 21 - 10 746.0 261 49
44 - 3 22 - 4 776.7 266 50
45 – 1 22 - 9 808.0 271 51
45 - 11 23 - 3 839.9 276 52
46 - 9 23 - 8 872.4 281 53
47 - 7 24 - 2 905.5 285 54
48 - 5 24 - 7 939.2 290 55
49 - 3 24 - 5 942.9 295 55
50 - 0 24 - 10 974.0 300 56
51 - 0 25 - 4 1009.1 305 57
51 - 8 25 - 9 1044.7 310 58
52 - 6 26 - 3 1081.0 315 59


*H = 16.75 in. Notes: 1. All dimensions are to the inside crest and are subject to manufacturing tolerances. 2. Sizes are representative, other sizes may be available, contact your manufacturer.

				ayout details			
Maximum Span ft-in.	Rise ft-in.	Bottom Span ft-in.	End Area ft ²	Crown H	Crown Radius in.	Side H	Side Radius in.
20 - 4	9 - 2	20 - 3	149.4	12	142	5	87
21 - 7	9 - 4	21 - 6	162.7	13	154	5	87
22 - 10	9 - 7	22 - 9	176.4	14	165	5	87
25 - 5	10 - 1	25 - 3	205.0	16	189	5	87
26 - 8	10 - 4	26 - 7	219.9	17	201	5	87
27 - 7	11 - 7	27 - 5	256.9	17	201	6	102
27 - 11	10 - 7	27 - 10	235.2	18	213	5	87
29 - 10	13 - 1	29 - 7	314.3	18	213	7	118
29 - 3	10 - 10	29 - 1	251.0	19	224	5	87
30 - 6	11 - 1	30 - 5	267.2	20	236	5	87
32 - 8	12 - 6	32 - 7	327.2	21	248	6	102
33 - 12	12 - 9	33 - 10	345.8	22	260	6	102
34 - 5	11 - 9	34 - 4	317.7	23	274	5	87
36 - 4	14 - 3	36 - 1	412.9	23	274	7	118
35 - 8	11 - 11	35 - 7	335.5	24	285	5	87
37 - 7	14 - 5	37 - 5	433.9	24	285	7	118
36 - 12	12 - 2	36 - 10	353.7	25	297	5	87
38 - 10	14 - 8	38 - 8	455.3	25	297	7	118
40 - 1	14 - 11	39 - 11	477.2	26	309	7	118
42 - 7	16 - 5	42 - 5	556.3	27	321	8	138
43 - 10	16 - 7	43 - 8	580.5	28	333	8	138
45 - 1	16 - 10	44 - 11	605.2	29	344	8	138
46 - 5	17 - 1	46 - 3	630.3	30	356	8	138
48 - 7	18 - 7	48 - 5	720.8	31	368	9	154
49 - 11	18 - 10	49 - 8	748.3	32	380	9	154
51 - 2	19 - 1	50 - 11	776.2	33	392	9	154
53 - 0	21 - 7	52 - 9	917.9	33	392	11	185



CORRUGATED STEEL BOX CULVERTS

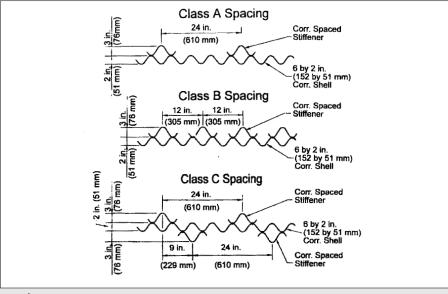
Corrugated steel box culverts closely resemble the rectangular shape of a low, wide box. These bridges or culverts are manufactured from standard structural plate or deep corrugated structural plate (see preceding section). This is made possible by the addition of special reinforcing elements to standard structural plate or the addition of special rib plates (where required) to the standard and deep corrugated structural plate. The resulting combined section develops the flexural capacity required for the very flat top and sharp corners.

The foundation for box culverts can be designed as a conventional concrete footing, with steel footer pads (as shown in Figure 2.13), or a full steel invert.

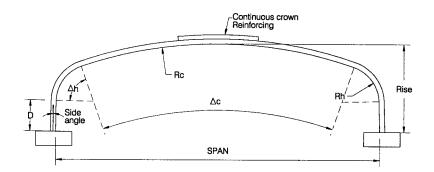
Corrugated steel box culverts can be designed for low, wide waterway requirements with heights of cover between 1.4 to 5.0 feet (measured from the outside crest of main barrel) and various loading situations. Box culverts are available in standard spans of 9 feet 2 inches to 53 feet 0 inches and rises of 2 feet 6 inches to 13 feet 1 inch. Tables 2.47, 2.48 and 2.49 provides representative sizes available. Contact your CSP fabricator for information on box culvert sizes not listed in Tables 2.47, 2.48 and 2.49.

Nomi	nal Size	Waterway Minimum		Nominal Size		Waterway	Minimun
Span	Rise	Area	Cover	Span	Rise	Area	Cover
ft-in.	ft-in.	ft ²	ft	ft-in.	ft-in.	ft ²	ft
9-8	2-7	20.2	1.33	12-6	2-11	30.6	1.33
10-1	3-4	27.9	1.33	12-10	3-9	40.6	1.33
10-7	4-2	35.9	1.33	13-2	4-6	50.8	1.33
11-0	4-11	44.2	1.33	13-6	5-4	61.4	1.40
11-5	5-8	53.0	1.33	13-10	6-1	72.2	1.40
11-10	6-5	61.9	1.33	14-2	6-10	83.1	1.40
12-3	7-3	71.2	1.33	14-6	7-8	94.4	1.50
12-8	8-0	80.9	1.33	14-10	8-5	105.99	1.50
10-5	2-8	23.1	1.33	13-3	3-1	33.88	1.33
10-10	3-5	31.2	1.33	13-6	3-10	44.3	1.40
11-2	4-3	39.7	1.33	13-10	4-8	55.1	1.40
11-7	5-0	48.4	1.33	14-1	5-5	66.0	1.40
12-0	5-9	57.7	1.33	14-5	6-2	77.22	1.40
12-5	6-7	67.0	1.33	14-9	7-0	88.8	1.50
12-10	7-4	76.9	1.33	15-0	7-9	100.55	1.50
13-3	8-2	85.1	1.33	15-4	8-7	110.1	1.50
11-1	2-9	25.1	1.33	13-11	3-2	36.6	1.40
11-6	3-6	34.0	1.33	14-2	3-11	47.88	1.40
11-10	4-4	43.1	1.33	14-6	4-9	59.1	1.50
12-3	5-1	52.5	1.33	14-9	5-6	70.7	1.50
12-7	5-10	62.3	1.33	15-00	6-4	82.4	1.50
13-00	6-8	72.3	1.33	15-4	7-1	94.5	1.50
13-5	7-5	82.6	1.33	15-7	7-11	106.8	1.60
13-9	8-2	93.2	1.40	15-10	8-8	119.2	1.60
11-10	2-10	28.0	1.33	14-7	3-3	40.2	1.50
12-2	3-8	37.4	1.33	14-10	4-1	51.8	1.50
12-6	4-5	47.0	1.33	15-1	4-10	63.6	1.50
12-10	5-2	57.0	1.33	15-4	5-8	75.6	1.50
13-3	6-0	67.1	1.33	15-7	6-5	88.0	1.60
13-7	6-9	77.6	1.40	15-10	7-3	100.3	1.60
13-11	7-6	88.2	1.40	16-1	8-0	113.0	1.60
14-3	8-4	97.5	1.40	16-4	8-10	123.0	1.60
15-3	3-5	43.3	1.50	18-0	3-11	58.8	1.80
15-6	4-2	55.9	1.60	18-1	4-9	73.3	1.80
15-9	5-0	68.1	1.60	18-3	5-7	87.9	1.80
16-0	5-9	80.7	1.60	18-4	6-4	102.66	1.80
16-2	6-7	93.2	1.60	18-6	7-2	117.3	1.90
16-5	7-4	106.5	1.70	18-7	7-11	132.3	1.90
16-8	8-2	119.7	1.70	18-9	8-9	147.3	1.90
16-10	8-11	133.0	1.60	18-10	9-6	162.4	1.90

Low profile box culvert — size and end area 6×2 in corrugations — bolted seams


Chapter 2

Notes:
 Maximum cover is 5 ft. Where cover in excess of 5 ft is required, consult with manufacturer.
 To determine minimum allowable cover, add 3 in. to rise dimension to allow for material thickness
 If interior ribs are used, reduce waterway area by 5%.


6 x 2 in. corrugations — bolted seams									
Nomir	Nominal Size Waterway Mi		Minimum	Nomii	nal Size	Waterway	Minimum		
Span ft-in.	Rise ft-in.	Area ft ²	Cover ft	Span ft-in.	Rise ft-in.	Area ft ²	Cover ft		
16-0	3-6	47.1	1.60	18-8	4-1	63.4	1.90		
16-2	4-4	59.9	1.60	18-9	4-11	78.4	1.90		
16-4	5-1	72.8	1.70	18-10	5-8	93.4	1.90		
16-7	5-11	85.8	1.70	18-11	6-6	108.5	1.90		
16-9	6-9	99.1	1.70	19-1	7-4	123.6	1.90		
17-0	7-6	112.4	1.70	19-2	8-1	138.9	1.90		
17-2	8-4	126.0	1.70	19-3	8-11	154.2	1.90		
17-5	9-1	137.0	1.70	19-4	9-8	166.0	1.90		
16-8	3-8	50.7	1.70	19-4	4-3	67.7	1.90		
16-10	4-6	64.1	1.70	19-5	5-1	83.3	1.90		
17-0	5-3	77.6	1.70	19-6	5-10	98.9	2.00		
17-2	6-1	91.3	1.70	19-6	6-8	114.6	2.00		
17-4	6-10	105.1	1.70	19-7	7-5	126.6	2.00		
17-6	7-8	119.1	1.80	19-8	8-3	146.2	2.00		
17-8	8-5	133.2	1.80	19-9	9-1	162.0	2.00		
17-10	9-3	147.4	1.80	19-10	9-10	178.0	2.00		
17-14	3-10	55.0	1.70	20-8	4-7	77.5	2.10		
17-6	4-7	68.8	1.80	20-8	5-5	94.1	2.10		
17-7	5-5	82.8	1.80	20-8	6-2	110.7	2.10		
17-9	6-2	96.8	1.80	20-8	7-0	127.4	2.10		
17-11	7-0	111.1	1.80	20-9	7-10	143.3	2.10		
18-1	7-9	125.4	1.80	20-9	8-7	160.7	2.10		
18-3	8-7	139.8	1.80	20-9	9-5	177.4	2.10		
18-5	9-4	151.2	1.80	20-9	10-2	194.2	2.10		

2. To determine minimum allowable cover, add 3 in. to rise dimension to allow for material thickness

3. If interior ribs are used, reduce waterway area by 5%.

Figure 2.19 Reinforcing rib details for 6 x 2 in. structural plate box.

	DCSP Type I — size and layout details for box culverts 15 x 5 1/2 in corrugation profile — bolted seams									
15 x 5 1/2 in corr	rugation profile —	- bolted sea	ms							
Span ft-in.	Rise ft-in.	Area ft ²	Crown Radius in.	Haunch Radius in.	Side Angle degree	Total *S				
10'-4 3/4"	3'-10 1/2"	33.6	347.2	40	14.00	11				
11'-7 7/8"	4'-7 7/8"	46.6	347.2	40	10.00	13				
12'-7 1/8"	4'-9 5/8"	53.2	347.2	40	6.00	14				
13' 0"	7' 3"	79.1	347.2	40	12.66	17				
12' 8 1/8"	4'-1 3/4"	45.0	347.2	40	11.35	13				
13' 5 5/8"	6' 1 1/4"	70.6	347.2	40	11.35	16				
13'-9 3/4"	4'-3 1/2"	51.2	347.2	40	10.04	14				
15'-6 1/2"	6'-5 1/4"	87.8	347.2	40	8.73	18				
14'-11 1/4"	4'-5 1/2"	57.7	347.2	40	8.73	15				
16'-0 1/2"	5'-3 1/2"	75.0	347.2	40	4.76	17				
15'-11 1/4"	7'-9"	108.6	347.2	40	8.73	20				
16'-10 7/8"	7'-11 1/4"	119.0	347.2	40	7.42	21				
17'-1 3/8"	5'-5 3/4"	83.1	347.2	40	3.45	18				
17'-7"	6'-9 3/4"	106.5	347.2	40	6.11	20				
17'-5 1/2"	4'-8 7/8"	71.3	347.2	40	8.53	17				
17'-10 3/8"	8'-1 5/8"	129.9	347.2	40	6.11	22				
18'-6 3/4"	4'-11 1/4"	78.9	347.2	40	7.22	18				
19'-6 3/8"	8'-8 1/8"	153.2	347.2	40	3.81	24				
19'-4"	5'-2 3/4"	87.9	347.2	40	3.49	19				
20'-2 5/8"	6'-2 7/8"	111.2	347.2	40	2.50	21				
20'-5 1/2"	8'-10 7/8"	165.3	347.2	40	2.50	25				
20'-8 7/8"	5'-4 3/4"	95.9	347.2	40	4.60	20				
21'-3 1/8"	6'-5 3/4"	121.1	347.2	40	1.19	22				
21'-3 3/4"	7'-9 3/4"	149.5	347.2	40	1.19	24				
21'-9 5/8"	5'-7 5/8"	105.2	347.2	40	3.29	21				
22'-10 3/8"	5'-10 3/4"	114.8	347.2	40	1.98	22				
22'-11 1/2"	7'-2 5/8"	145.3	347.2	40	1.98	24				
23'-0 5/8"	8'-6 3/4"	176.0	347.2	40	1.98	26				
23' 11"	6'-1 7/8"	125.1	347.2	40	0.67	23				
23'-11 3/8"	7'-5 7/8"	156.9	347.2	40	0.67	25				
23'-11 3/4"	8'-9 7/8"	189.0	347.2	40	0.67	27				

*S = 16 in.

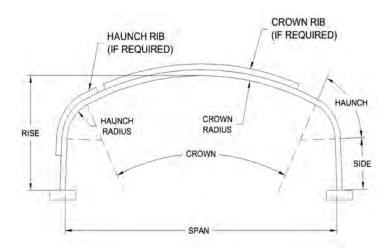
Note: 1. All dimensions are to the inside crest and subject to manufacturing tolerances.

2. Other sizes are available.

3. All structures should be reviewed based on live load and geotechnical condition.

15 x 5 1/2 in corrugation profile — bolted seams							
Span ft-in.	Rise ft-in.	Area ft ²	Crown Radius in.	Haunch Radius in.	Side Angle degree	Total *S	
24'-0 1/8"	10'-1 7/8"	220.9	347.2	40	0.67	29	
24'-3 1/2"	5'-6 1/8"	109.9	347.2	40	11.38	22	
25'-7 1/8"	6'-5 3/8"	136.8	347.2	40	10.07	24	
26'-0 3/4"	7'-9 1/4"	170.8	347.2	40	10.07	26	
28'-1 5/8"	6'-3 5/8"	149.6	450.0	40	2.09	26	
28'-2 3/4"	7'-7 5/8"	187.1	450.0	40	2.09	28	
28'-4"	8'-11 5/8"	224.9	450.0	40	2.09	30	
30'-0"	6'-4 3/8"	157.6	450.0	40	5.94	27	
30'-3 1/4"	7'-8 1/4"	197.5	450.0	40	5.94	29	
30'-6 1/2"	9'-0 1/4"	237.9	450.0	40	5.94	31	
32'-2 1/8"	6'-11"	182.1	450.0	40	3.92	29	
32'-4 1/4"	8'-2 7/8"	225.0	450.0	40	3.92	31	
32'-6 1/2"	9'-6 7/8"	268.2	450.0	40	3.92	33	
34'-3 7/8"	7'-6"	209.1	450.0	40	1.89	31	
34'-4 7/8"	8'-10"	254.9	450.0	40	1.89	33	
34'-5 7/8"	10'-2"	300.8	450.0	40	1.89	35	
35'-8 7/8"	7'-8 3/4"	221.6	450.0	40	3.32	32	
35'-10 3/4"	9'-0 3/4"	269.3	450.0	40	3.32	34	
36'-0 1/2"	10'-4 3/4"	317.2	450.0	40	3.32	36	
38'-2 1/2"	8'-3 5/8"	250.9	450.0	40	3.71	34	
38'-4 5/8"	9'-7 5/8"	301.8	450.0	40	3.71	36	
38'-6 3/4"	10'-11 1/2"	353.2	450.0	40	3.71	38	
40'-3"	9'-0"	284.8	450.0	40	1.68	36	
40'-4"	10'-4"	338.5	450.0	40	1.68	38	
40'-4 3/4"	11'-8"	392.3	450.0	40	1.68	40	
42' 9"	9' 3"	330.7	646.9	57.2	1.56	39	
42' 10"	10' 7"	387.7	646.9	57.2	1.56	41	
46' 3"	10' 0"	383.3	646.9	57.2	1.28	42	
46' 4"	11' 5"	445.0	646.9	57.2	1.28	44	
49' 3"	10' 5"	413.1	646.9	57.2	1.25	44	
49' 4"	11'9"	478.8	646.9	57.2	1.25	46	
51' 1'	12' 7"	532.4	646.9	57.2	1.25	48	
51' 8"	13' 1"	561.0	646.9	57.2	1.25	50	

*S = 16 in.


Note: 1. All dimensions are to the inside crest and subject to manufacturing tolerances.

2. Other sizes are available.

3. All structures should be reviewed based on live load and geotechnical condition.

36 foot span by 10 foot 5 inch rise deep corrugated box culvert with beveled ends, used for a Fish Passage project in the Willamette National Forest in Oregon.

Span ft-in.	Rise ft-in.	End Area ft ²	Crown H*	Crown Radius in.	Haunch H*	Haunch Radius in.	Side H*	Side Radius in.
13 - 1	4 - 0	42.4	5.2	160	3.2	49	0.2	160
13 - 3	4 - 7	50.7	5.2	169	3.7	49	0.2	169
14 - 9	4 - 7	56.9	6	233	3.8	49	0.2	233
16 - 5	4 - 7	63.0	7.2	273	3.7	49	0.2	273
18 - 1	4 - 7	62.2	9	184	2.8	49	0.2	184
12 - 6	4 - 11	51.8	4.4	162	3.8	49	0.5	162
14 - 1	4 - 11	58.6	5.6	203	3.8	49	0.4	203
15 - 9	4 - 11	65.0	7	225	3.7	49	0.3	225
13 - 5	5 - 3	59.7	5.1	180	3.7	49	0.75	180
17 - 1	5 - 3	73.6	8.7	195	3.3	49	0.35	195
20 - 0	5 - 3	52.2	10.4	286	3.6	49	0.2	286
15 - 1	5 - 11	77.1	6.2	230	3.8	49	1.1	230
17 - 1	5 - 11	85.4	8.2	215	3.4	49	1	215
19 - 0	5 - 11	92.8	10.3	214	3.2	49	0.65	214
22 - 4	5 - 11	107.6	12.7	270	3.3	49	0.35	270
13 - 11	6 - 7	78.7	5.1	190	3.5	49	1.95	190
16 - 1	6 - 7	88.4	7.5	171	2.9	49	1.85	171
18 - 1	6 - 7	96.9	10.6	161	2.7	49	1	161
20 - 0	6 - 7	102.9	12.6	175	2.7	49	0.5	175
21 - 4	6 - 7	113.7	12.8	213	3	49	0.6	213
23 - 11	6 - 7	130.9	14	295	3.5	49	0.5	295
14 - 9	7 - 3	89.3	5.2	181	3	49	2.9	181
16 - 5	7 - 3	99.6	7.9	163	2.7	49	2.35	163
17 - 1	7 - 3	108.5	7.4	280	3.7	49	2.1	280
22 - 12	7 - 3	137.7	13.5	252	3.1	49	1.15	252
24 - 11	7 - 3	146.5	15.3	263	3	49	0.85	263
16 - 1	7 - 10	110.0	6.3	238	3.4	49	2.95	238
18 - 1	7 - 10	121.7	8.5	213	3	49	2.75	213
20 - 0	7 - 10	132.7	10.8	209	2.8	49	2.3	209
21 - 8	7 - 10	142.8	12.8	218	2.9	49	1.7	218
23 - 4	7 - 10	153.2	13.9	246	3	49	1.55	246

Chapter 2

Notes: 1. All dimensions are to the inside crest and are subject to manufacturing tolerances.

94

2. Sizes are representative, other sizes may be available, contact your manufacturer.

6 v 6 in		e and layou ons — bolte						
Span ft-in.	Rise ft-in.	End Area ft ²	Crown H*	Crown Radius in.	Haunch H*	Haunch Radius in.	Side H*	Side Radius in.
25 - 5	7 - 10	163.3	15.9	254	2.8	49	1.25	254
19 - 8	8-6	145.8	9.4	264	3.2	49	3.1	264
22 - 12	8-6	169.3	12.5	292	3.2	49	2.55	292
23 - 11	8-6	169.3	14.8	231	2.7	49	1.9	231
20 - 0	9-2	159.2	9.5	262	3.1	49	3.65	262
21 - 12	9-2	173.4	10.7	291	3	49	3.65	202
25 - 0	9-2 9-2	197.7	14.4	291	3.1	49	2.7	291
23 - 0 22 - 4	9-2 9-10	189.0	14.4	238	2.7	49	3.75	238
22 - 4 24 - 3	9 - 10 9 - 10	203.1	13	238	2.7	49	3.8	238
24 - 3 25 - 6	9 - 10 9 - 10	205.1	14.9	275	2.7	49	3.15	275
25 - 6 26 - 3	9-10 6-7		14.9	284		49		284 294
26 - 3 28 - 8	6-7 6-7	137.8 155.3	16.2	400	3.2 3.6	49 49	0.2	294 400
							0.3	
26 - 3	7 - 2	155.9	15.8	309	3.2	49	0.9	309
29 - 6	7 - 3	173.8	18.1	367	3.2	49	0.75	367
32 - 10	7 - 3	190.5	20.6	419	3.3	49	0.4	419
27 - 11	7 - 11	184.5	16.4	362	3.2	49	1.6	362
31 - 2	7 - 10	203.4	19	413	3.3	49	1.2	413
36 - 1	7 - 11	231.0	23	477	3.5	49	0.5	477
27 - 11	8 - 6	203.1	16.5	362	3.3	49	1.95	362
32 - 10	8 - 6	221.7	21.6	337	2.8	49	0.9	337
37 - 9	8 - 6	251.0	25.2	411	3	49	0.4	411
26 - 3	9 - 2	209.9	15.1	345	3.3	49	2.65	345
32 - 10	9 - 2	244.7	21.1	350	2.8	49	1.65	350
36 - 1	9 - 2	266.6	23.5	402	2.9	49	1.35	402
39 - 4	9 - 2	287.3	26.2	444	3.1	49	0.8	444
26 - 3	9 - 10	227.7	14.4	393	3.4	49	3.4	393
29 - 6	9 - 10	242.6	17.7	325	2.7	49	2.95	325
32 - 10	9 - 10	267.7	20.5	366	2.8	49	2.45	366
36 - 1	9 - 10	291.9	23	418	2.9	49	2.1	418
39 - 4	9 - 10	315.4	25.6	465	3	49	1.7	465
29 - 6	10 - 6	262.7	16.9	355	2.8	49	3.75	355
32 - 10	10 - 6	289.3	20.5	372	2.9	49	2.85	372
36 - 1	10 - 6	315.8	23.1	419	3	49	2.45	419
39 - 4	10 - 6	341.5	25.7	465	3.1	49	2.05	465
32 - 11	11 - 2	312.0	20.2	383	2.9	49	3.5	383
36 - 1	11 - 2	341.1	22.5	441	3	49	3.25	441
39 - 4	11 - 2	368.8	25.4	478	3.1	49	2.7	478
36 - 3	11 - 10	365.4	22.7	438	3	49	3.65	438
39 - 4	11 - 10	380.4	25.8	410	2.6	49	3	410
37 - 9	12 - 5	391.2	24.3	394	2.6	49	3.75	394
41 - 0	12 - 5	422.8	26.8	443	2.7	49	3.4	443

*H = 16.75 in.

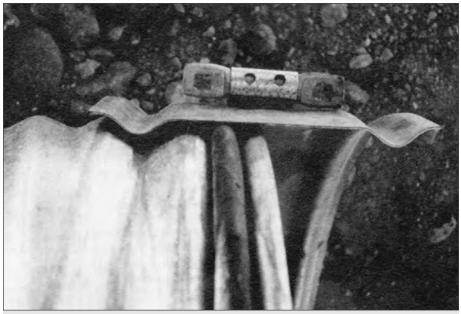
Notes: 1. All dimensions are to the inside crest and are subject to manufacturing tolerances. 2. Sizes are representative, other sizes may be available, contact your manufacturer.

SPECIFICATIONS

Specifications in Common Use

Specifications are divided into three basic classes – those covering design, materials, and installation. These classes are covered in Tables 2.50, 2.51 and 2.52.

Table 2	Table 2.50									
Design sp	ecifications									
Agency	Reference									
AASHTO	Standard Specifications for Highway Bridges—Division I, Section 12 LRFD Bridge Design Specifications – Section 12									
ASTM	Standard Practice for Structural Design of Corrugated Steel Pipe, Pipe Arches, and Arches for Storm and Sanitary Sewers and Other Buried Applications—ASTM A796									
AREMA	Manual for Railway Engineering – Section 4.9									


Table 2.51

Material	Description	Specific AASHTO	
Zinc Coated Sheets & Coils	Steel base metal* with 2 oz per ft^2 zinc coating	M-218	A929M
Polymer Coated Sheets and Coils	Polymer coatings applied to sheets* and coils*, 0.010 in. both sides	M-246	A742M
Aluminum Coated Coils – Type 2	Steel base metal* coated with 1 oz. per ft^2 of pure aluminum	M-274	A929M
Sewer and Drainage Pipe	Corrugated pipe fabricated from any of the above sheets or coils. Pipe is fabricated by corrugating continuous coils into helical form with lock seam or welded seam, or by rolling annular corrugated mill sheets and riveting or spot welding seams: 1. Galvanized corrugated steel pipe 2. Polymeric pre-coated sewer and drainage pipe 3. Aluminized Type 2 corrugated steel pipe 4. Structural plate pipe	M-36 M-245 M-274 M-167	A760M A762M A760M A761M
Asphalt Coated Steel Sewer Pipe	Corrugated steel pipe of any of the types shown above with a 0.050 in. asphalt coating	M-190	A849
Invert Paved Steel Sewer Pipe	 Corrugated steel pipe of any one of the types shown above: a. Asphalt coated pipe with 0.050 in. asphalt coating and pavement poured in the invert to cover the corrugation by 1/8 in. b. With a field applied 3 in. (3250 psi) concrete invert or 1 1/2 in. high strength (9600 psi) concrete invert. c. With polymer material applied 0.050 in. above the crest in the invert. 	M-190	A849 A849 A849
Fully Lined Steel Sewer Pipe	 Corrugated steel pipe of the types shown above: a. With an internal asphalt lining centrifugally spun in place. b. With an internal concrete lining in place. c. Corrugated steel pipe with a smooth steel liner integrally formed with the corrugated shell or. d. Corrugated steel pipe with a single thickness of smooth sheet fabricated with helical ribs projected outward or. 	M-190 M-36 M-36	A849 A849 A760 A760
Cold Applied Bituminous Coatings	e. With concrete pavement and linings installed in the field. Mastic or coal tar base coatings of various viscosities for field or shop coating of corrugated pipe or structural plate.	M-243	A979 A849
Gaskets and Sealants	 Standard O-ring gaskets Sponge neoprene sleeve gaskets Gasketing strips, butyl or neoprene Mastic sealant 		C443 D1056

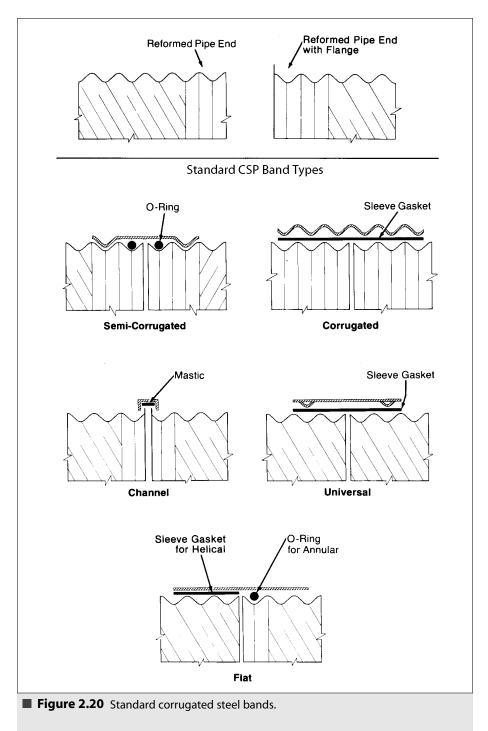
Table 2.52	
Installation specifications	
Agency	Reference
AASHTO	Standard Specification for Highway Bridges-Division II, Section 26 LRFD Bridge Construction Specifications
ASTM	Standard Practice for Installing Factory Made Corrugated Steel Pipe for Sewers and Other Applications — ASTM A798 Standard Practice for Installing Corrugated Steel Structural Plate Pipe for Sewers and Other Applications — ASTM A807
AREMA	Manual for Railway Engineering – Section 4.12
U.S. Dept. of Agriculture — Natural Resources Conservation Service	Construction Specification Section 51 Paragraph 6 Service
U.S. Dept of Agriculture Forest Service	Specification for Construction of Roads and Bridges, Section 603.04 through 603.08.
Federal Lands Highway	FP92 Section 602.03, 602.05, 602.07, and 602.08

A flat gasket rolled back over itself ready to receive the next section of pipe.

An O-ring gasket in place in the valley of the last corrugation on the end of the pipe.

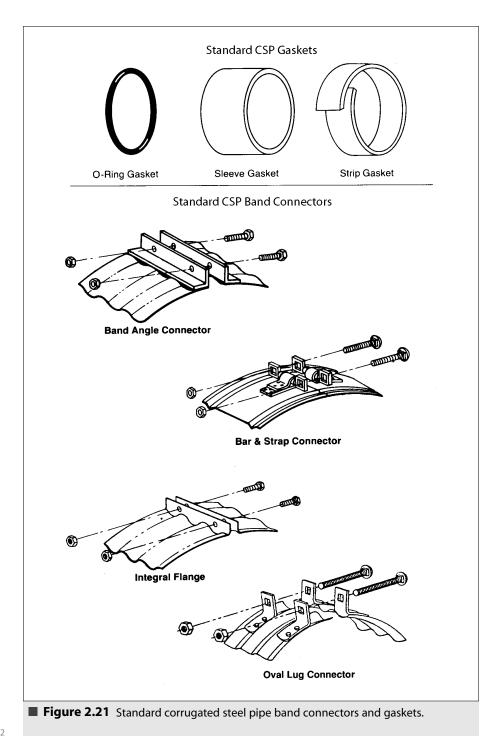
CORRUGATED STEEL PIPE COUPLING SYSTEMS

Field Joints for Corrugated Steel Pipe


The performance and material requirements for CSP coupling systems are scattered among several ASTM and AASHTO specifications. The two most commonly used specifications for defining CSP coupling systems are Section 26 of the AASHTO Standard Construction Specification for Highway Bridges and ASTM A760, Standard Specification for Corrugated Steel Pipe, Metallic Coated for Sewers and Drains. All CSP coupling systems involve one of the coupling bands depicted in Table 2.53 and may require a flat or o-ring gasket as also depicted in the same table. Figure 2.20 shows cross-section of assembled CSP coupling systems.

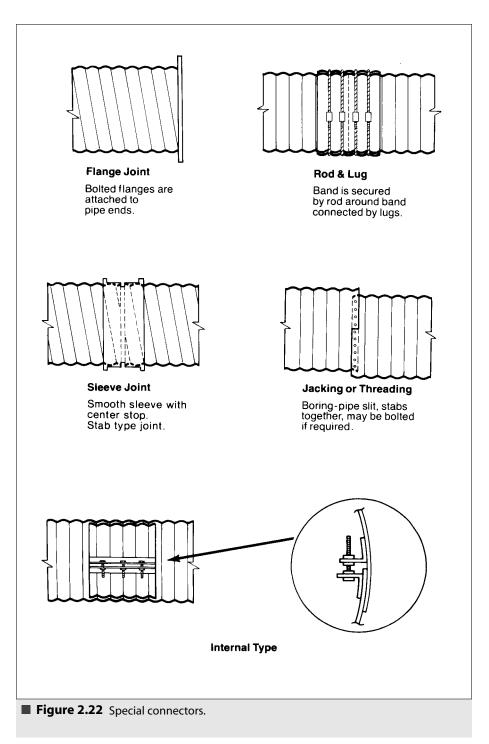

The performance of these coupling systems is defined by the amount of water or soil particles that pass through the joint. The basic joint specifications is the soil tight coupling system which has been the CSP joint specified for most culverts and storm sewers for nearly 100 years, with proven performance. The coupling system is defined by limiting the size of the openings that allow backfill materials to infiltrate into the pipe. If the specifications for a coupling system is made more restrictive, it may be necessary to include or improve a gasket as part of that system, and/or possibly include a geotextile wrap around the joint area on the outside of the pipe. Joining systems classified as leak resistant, will limit leakage to a limited amount of water passing through the joint. Consult NCSPA's website at www.ncspa.org or your local CSP fabricator for guidance on the coupling system appropriate for your project.

Table 2	Table 2.53														
Coupling	Coupling bands for corrugated steel pipe														
Gaskets Pipe Type															
Type Of	Cross		Bar, Bolt	Wedge	o	Sleeve or			He	elical					
Band	Section	Angles	& Strap	Lock	Ring	Strip	Mastic	Annular	Plain End	Reformed End					
Universal	~~~~ ~	х	х	x		x	х	х	x	х					
Corrugated	~~~~~	х	х	x		x	х	х	х	х					
Semi- Corrugated	~~~~	х	х	х	х		x	x		х					
Channel	-	х	х		х		х			х					
Flat		х	х	x		x	х	х	х	х					
Hat	~	х	х				х			х					



Two-piece corrugated band joins length of annular riveted pipe.

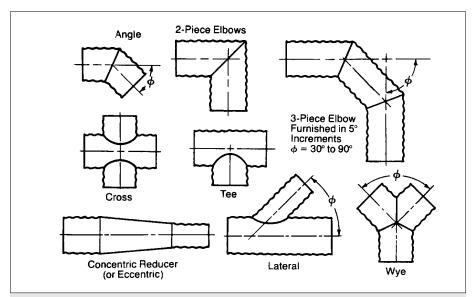
Two-piece bands being installed on reformed ends of CSP.



Corrugated steel pipe band connectors.

CSP Field Joints

For unusual conditions, such as high pressures, extreme disjointing forces, threading pipe inside existing pipe, jacking or boring pipe, and deep vertical drop inlets, a variety of special designs are available. New joints can be readily designed by manufacturers to meet particular requirements.


Corrugated Steel Pipe Design Manual

Fittings

One of the benefits of corrugated steel pipe is that it can be easily and economically fabricated into an assortment of fittings. Table 2.54 provides minimum dimensions for CSP elbows (round pipe). Table 2.55 provides minimum dimensions for CSP tees, crosses, laterals and wyes (round pipe).

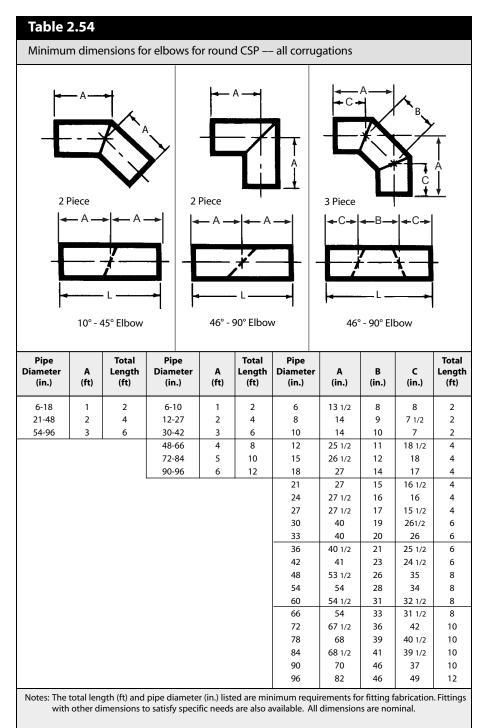
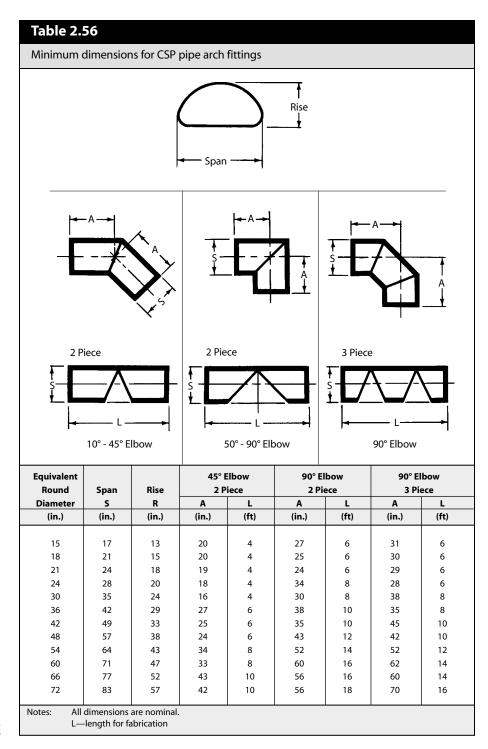
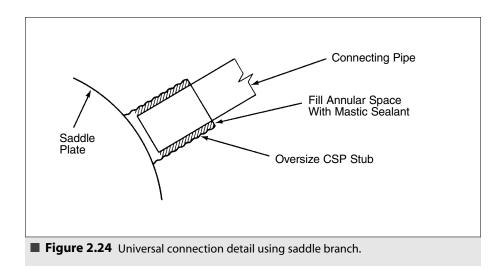

Structural plate fittings are shop cut from curved corrugated plates and welded together. Theses structures are usually assembled and bolted in the shop in a trial fit to assure that all parts mate properly. The parts are then clearly marked for field assembly.

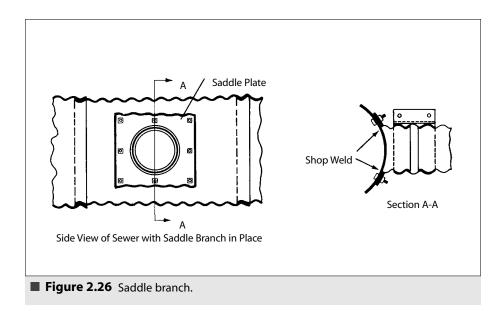
Figure 2.23 Shop fittings for corrugated steel pipe and pipe arch. Shop fabricated fittings are available for a wide variety of conditions.



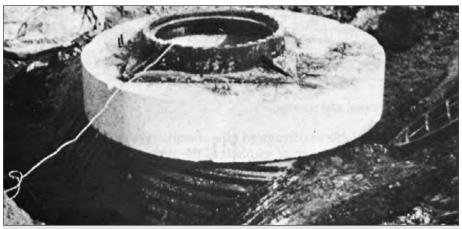
Moderate horizontal curvature in a culvert or sewer can be achieved with ordinary couplings. Greater changes in alignment will require fabricated fittings.

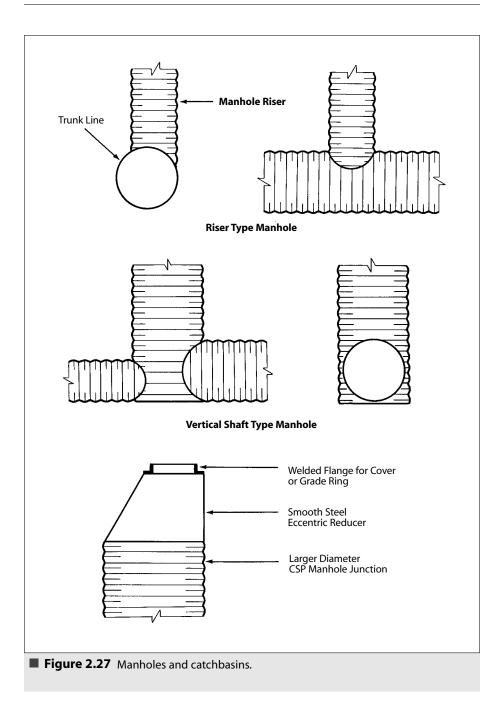

Tabl	e 2.5	5												
Minim	Minimum dimensions for CSP round fittings													
					<u> </u>		,	$\mathbf{\lambda}$						
		<u> </u>					В	\wedge	<	,				
† R ■				Γ	\checkmark	_ `				Ľ	`			
Ĭ.		<u>'/</u> _	1 î		◠		\mathbb{N}				\overline{I}	2	>	
							\uparrow			Т		У		
		I				-		T				X		
+	 /	Α ——	-	 - −B−	►I – B	→┥│	┝━──	– A –	->	 ← A	- > `			
	Т	ee		(Cross		45	° Latera	ıl	4	5° Wye			
			Stub S	Same or	Smaller	Than N	lain Dia	meter						
Main Diam.		Tee			Cross			45° La	ateral			45° Wye	•	
	Α	В	TL	Α	В	TL	Α	В	c	TL	Α	В	TL	
(in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	(ft-in.)	
6 8	2-6 2-8	1-3 1-4	3-9 4-0	2-6 2-8	1-3 1-4	5-0 5-4	2-9 3-0	1-6 1-8	1-2 1-2	4-3 4-8	1-1 1-2	1-3 1-4	3-7 3-10	
10	2-10	1-4	4-0	2-10	1-4	5-8	3-2	1-10	1-2	5-0	1-2	1-4	4-0	
12	3-0	1-6	4-6	3-0	1-6	6-0	3-5	2-0	1-3	5-5	1-3	1-6	4-3	
15	3-3	1-8	4-11	3-3	1-8	6-6	3-9	2-3	1-3	6-0	1-3	1-8	4-7	
18	3-6	1-9	5-3	3-6	1-9	7-0	4-2	2-6	1-4	6-8	1-4	1-9	4-10	
21	3-9	1-11	5-10	3-9	1-11	7-6	4-6	2-9	1-4	7-3	1-4	1-11	5-2	
24	4-0	2-0	6-0	4-0	2-0	8-0	4-10	3-0	1-5	7-10	1-5	2-0	5-5	
27	4-3	2-2	6-5	4-3	2-2	8-6	5-2	3-3	1-6	8-5	1-5	2-2	5-9	
30	4-6	2-3	6-9	4-66	2-3	9-0	5-6	3-6	1-6	9-0	1-6	2-3	6-0	
33	4-9	2-5	7-2	4-9	2-5	9-6	5-11	3-9	1-7	9-8	1-7	2-4	6-3	
336 42	5-0 5-6	2-6 2-9	7-6 8-3	5-0 5-6	2-6 2-9	10-0 11-0	6-3 7-0	4-0 4-6	1-8 1-9	10-3 11-6	1-8 1-9	2-6 2-9	6-8 7-3	
42	6-0	3-0	8-5 9-0	6-0	2-9 3-0	12-0	7-0	4-0 5-0	1-9	12-8	1-9	3-0	7-5 7-10	
54			9-9				8-4	5.6	1 1 1	12.10	1 1 1		0.5	
54 60	6-6 7-0	3-3 3-6	9-9 10-6	-	-	-	8-4 9-1	5-6 6-0	1-11 2-0	13-10 15-1	1-11 2-0	3-3 3-6	8-5 9-0	
60 66	7-0 7-6	3-6 3-9	10-6	-	-	-	9-1	6-0 6-6	2-0 2-2	15-1	2-0	3-6 3-9	9-0 9-8	
72	8-0	4-0	12-0	-	-	-	10-6	7-0	2-2	17-6	2-2	4-0	10-3	
78	8-6	4-3	129	-	-	-	11-2	7-6	2-4	18-8	2-4	4-3	10-10	
84	9-0	4-6	13-6	-	-	-	11-11	8-0	2-5	19-11	2-5	4-6	11-5	
90	9-6	4-9	14-3	-	-	-	12-8	8-6	2-7	21-2	2-7	4-9	12-1	
96	10-0	5-0	15-0	-	-	-	13-4	9-0	2-8	22-4	2-8	5-0	12-8	
Notes: 1	2 in. min	imum s	tub dime	ension to	allow fo	or use of	¹ 12 in. w	ide conr	necting b	band.				
	L - total								J.					

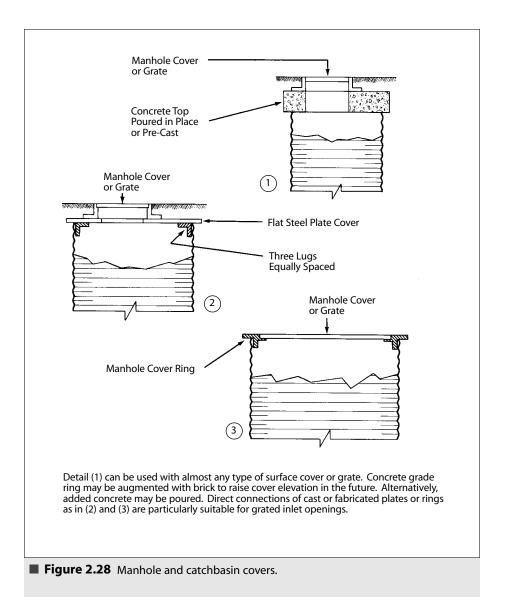
Corrugated Steel Pipe Design Manual


Saddle Branch

Saddle branches are used to connect small branch lines to the main. Saddles make it practical to tie in connections accurately after the main line is laid, or, new connections can be made effectively on old lines with saddles. Saddles can be used to connect almost any type of pipe to a CSP main. A common universal type of saddle branch stub is shown below.




Figure 2.25 Typical pre-fabricated CSP saddle branch fitting.



Manholes are available in corrugated steel pipe construction in two basic types as shown in Figure 2.27. The riser type of manhole is the simpler of the two and very economical. It is only feasible for trunk lines with a 36 inch diameter or greater. When junctions of smaller diameters are involved it is possible to use a vertical shaft of larger diameter CSP to connect the sewers. However, when the shaft is greater than 36 inches diameter, some reduction details must be used to suit the cover. Typical reduction details are shown. Larger sizes may require reinforcement.

Standard cast iron covers and/or steel grates are used with CSP manholes and catch basins.

The manhole covers shown in Figure 2.28 transfer any load on the cover directly to the manhole riser. For this reason, manhole covers of this type should be placed only where vehicular traffic is not expected. If the manhole will be subjected to wheel loads, the manhole riser should be designed as per Chapter 8 of this manual.

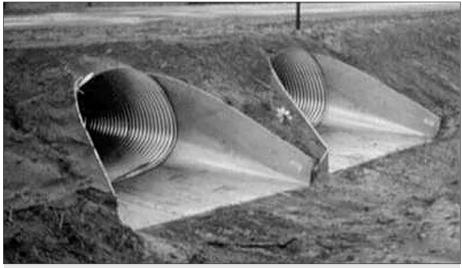
Special galvanized steel fitting for lake water intake of power station. Sealant ribbons were used on all seams. Divers made under water bolted connection between sections.

King-size wye or lateral for large storm sewer was shop-assembled, then dismantled and shipped to the job site for final erection.

Structural plate fittings are shop cut from curved corrugated plates and bolted or welded together. Such structures are usually assembled and bolted in the shop in a trial fit to assure that all parts mate properly, then are marked clearly for field assembly.

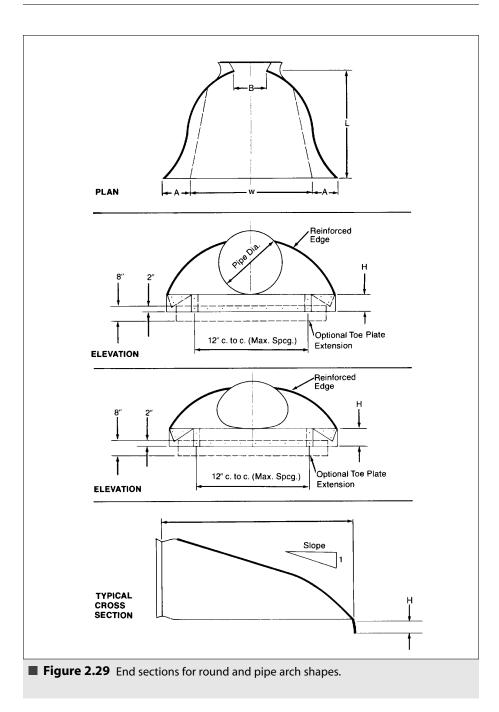
END FINISH

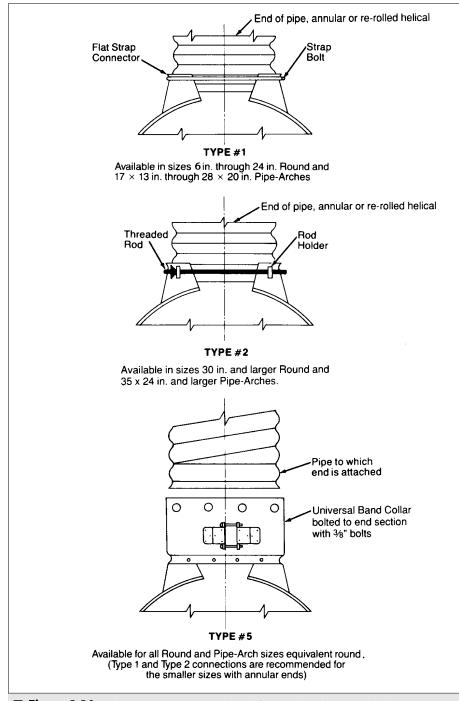
Purposes


The principal purpose of end finish on corrugated steel pipe culverts or spillways is hydraulic efficiency—to prevent scour at the inlet, undermining at the outlet and to increase capacity. Other purposes may be to retain the fill slope, discourage burrowing rodents, or improve safety. For additional information, see Chapters 4 and 5, on Hydraulic Design, and Chapters 7 and 8, Structural Design and Special Design.

Types of Finish

Types of steel end finishes include (1) end sections, flared and prefabricated, (2) safety slope end sections, (3) riprap and others, (4) skews and bevels, and (5) steel sheeting to serve as a low headwall and cutoff wall.


1. End Sections. Steel end sections are shop fabricated for assembly in the field by attachment to corrugated steel culverts from 6 to 96 inches diameter or pipe arches from 17 x 13 inches to 142 x 91 inches Dimensions and other data are given in Tables 2.57 to 2.59 and Figures 2.29 and 2.30.


These end sections are listed in standard specifications of state highway departments, county road departments, railroads and others. They meet the requirements for efficient and attractive end finish on culverts, conduits, spillways and sewer outfalls. They attach to the culvert ends by simple bolted connections of various designs and can be completely salvaged if lengthening or relocation is necessary.

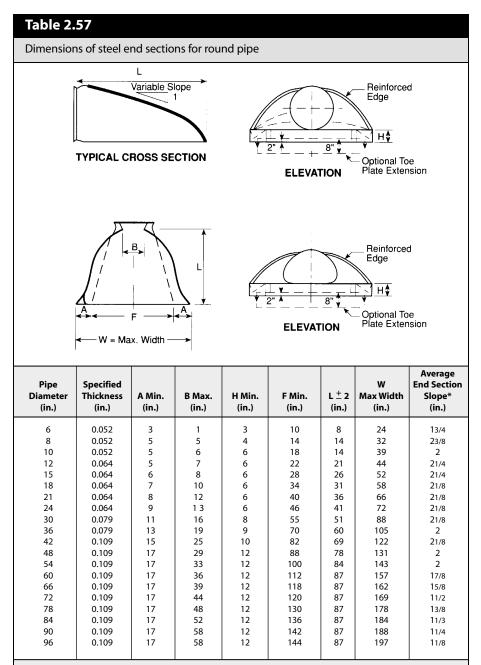

Arch flared end sections.

Figure 2.30 End section connection details for round and pipe arch shapes.

Notes: *Fill slope need not match the end section slope. Fill can be shaped at each site to fit.

1. End sections available in galvanized steel or aluminized steel, Type 2.

2. Some larger sizes may require field assembly.

3. Optional toe plates may be provided to depths specified.

Table 2.58

Dimensions of steel end sections for pipe arch 2 2/3 x 1/2 in. corrugations												
Span x Rise (in.)	Equiv/ Round (in.)	Specified Thickness (in.)	A Min. (in.)	B Max. (in.)	H Min. (in.)	F Min. (in.)	L ± 2 (in.)	W Max Width (in.)	Approx. Average End Section Slope* (in.)			
17 x 13	15	0.064	5	9	6	28	20	52	21/8			
21 x 15	18	0.064	6	11	6	34	24	58	2			
24 x 18	21	0.064	7	12	6	40	28	63	21/8			
28 x 20	24	0.064	7	16	6	46	32	70	2			
35 x 24	30	0.079	9	16	6	58	39	85	17/8			
42 x 29	36	0.079	11	18	7	73	46	104	17/8			
49 x 33	42	0.109	12	21	9	82	53	117	13/4			
57 x 38	48	0.109	16	26	12	88	62	132	17/8			
64 x 43	54	0.109	17	30	12	100	69	144	17/8			
71 x 47	60	0.109	17	36	12	112	77	156	17/8			
77 x 52	66	0.109	17	36	12	124	77	167	15/8			
83 x 57	72	0.109	17	44	12	130	77	177	11/2			

Notes: *Fill slope need not match the end section slope. Fill can be shaped at each site to fit.

1. End sections available in galvanized steel or aluminized steel, Type 2.

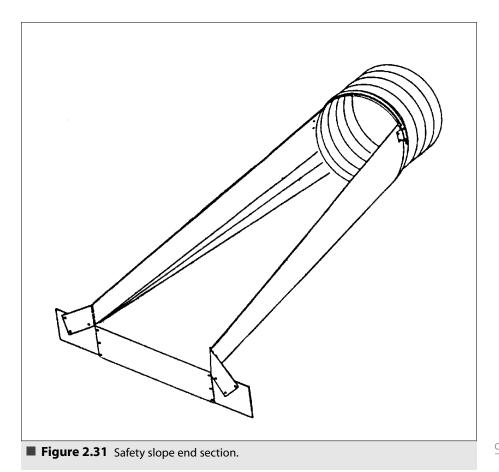
2. Some larger sizes may require field assembly.

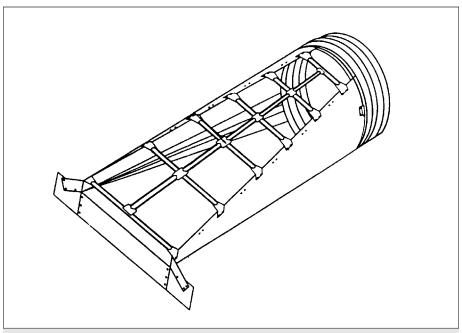
3. Optional toe plates may be provided to depths specified.

Table 2.59

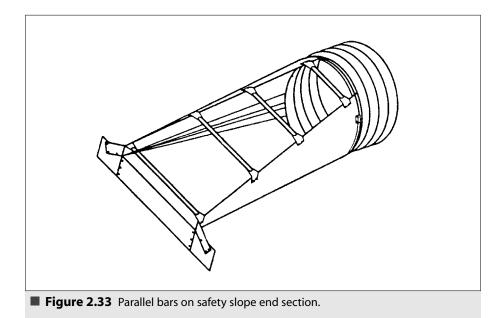
Dimensions of steel end sections for pipe arch 3 x 1 in. and 5 x 1 in. corrugations

								5	
Span x Rise (in.)	Equiv/ Round (in.)	Specified Thickness (in.)	A Min. (in.)	B Max. (in.)	H Min. (in.)	F Min. (in.)	L ± 2 (in.)	W Max Width (in.)	Approx. Average End Section Slope* (in.)
53 x 41	48	0.109	17	26	12	88	63	130	13/4
60 x 46	54	0.109	17	36	12	100	70	142	17/8
66 x 51	60	0.109	17	36	12	112	77	156	13/4
73 x 55	66	0.109	17	36	12	124	77	168	11/2
81 x 59	72	0.109	17	44	12	136	77	179	15/8
87 x 63	78	0.109	17	44	12	136	77	186	11/2
95 x 67	84	0.109	17	44	12	1 60	87	210	11/2
103 x 71	90	0.109	17	44	12	172	87	222	11/3
112 x 75	96	0.109	17	44	12	172	87	226	11/4
117 x 79	102	0.109	20	62	12	154	87	234	1 1/2
128 x 83	108	0.109	20	68	12	176	87	256	1 1/2
137 x 87	114	0.109	20	73	12	194	100	274	1 1/2
142 x 91	120	0.109	20	75	12	204	98	284	1 1/2


Notes: *Fill slope need not match the end section slope. Fill can be shaped at each site to fit.


1. End sections available in galvanized steel or aluminized steel, Type 2.

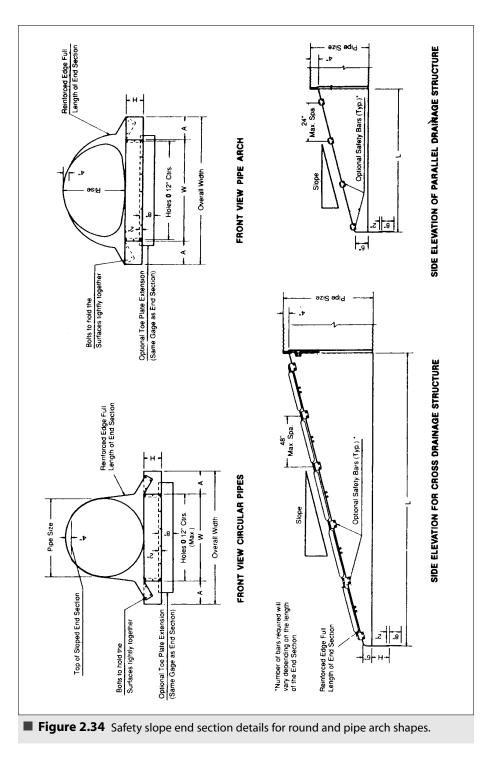
2. Some larger sizes may require field assembly.


3. Optional toe plates may be provided to depths specified.

2. Safety Slope End Sections. State and federally sponsored research studies show that flatter slopes on roadside embankments greatly minimize the hazard potential to motorists. Application of this concept, with the design of 4 to 1, 6 to 1, and 10 to 1 roadside embankments, has contributed significantly to improving the safety of our highways. The use of safety slope end sections on highway culverts maintains the safety design of the flattened roadway embankments. See figures 2.31 - 2.33. The pre-fabricated safety slope end sections are available with 4 to 1, 6 to 1, and 10 to 1 slopes and are designed to fit round pipe sizes from 12 inches through 60 inches and pipe arch sizes from 17 x 13 inches through 83 inches x 57 inches While safety is the primary reason for using safety slope end sections, the tapered flare improves the hydraulic efficiency of the culvert at both the inlet and outlet ends. A deep skirt anchors the end section while preventing scour and undercutting. The flat apron or bottom panels eliminate twisting or misalignment of the end treatment. Motorists who encroach on these flattened slopes, defined as recoverable slopes, generally stop their vehicles or slow them enough to return to the roadway safely. When culverts are required on these recoverable slopes they must be made traversable or present a minimal hazard to an errant vehicle. The preferred treatment is to match the slope of the culvert with the embankment slope.

Figure 2.32 Cross drainage bars on safety slope end section.

Cross drainage structures are those oriented under the main flow of traffic. On cross drainage structures, a small culvert is defined as a pipe with a 36 inch span or less or multiple pipes with a 30 inch span or less. Safety bars are not required on 30 inch spans or less when used in a cross drain application. Single structures with end sloped sections having spans greater than 36 inches can be made traversable for passenger size vehicles by using 3 inch safety bars to reduce the clear opening spans. The use of safety bars to make the safety slope end sections traversable should not decrease the hydraulic capacity of the culvert.


As referenced by AASHTO, full scale crash tests have shown that passenger size vehicles can traverse cross drainage structures with safety slope end sections equipped with cross drainage bars. This work has shown when bars are spaced on 30 inch centers, automobiles can safely cross at speeds as low as 20 mph and as high as 60 mph.

Parallel drainage structures are those oriented parallel to the main flow of traffic. They typically are used under driveways, field entrances, access ramps, intersecting side roads and median crossovers. These culverts present a significant safety hazard because they can be struck head-on by impacting vehicles. As with cross drains, the end treatments on parallel drains should match the traversable slope. Research shows that for parallel drainage structures, 3 inch diameter safety bars set on 24 inch centers will significantly reduce wheel snagging.

Safety slope end sections are efficient and provide an attractive end finish on cross and parallel drainage structures. They attach to the culvert end by simple bolted connections and can be completely salvaged if lengthening of the structure or relocation is required. Dimensions and other data are given in Tables 2.60, 2.61 and 2.62.

Round pipe with flared end sections and head wall.

Tabl	Table 2.60													
	Dimensions of safety slope end sections for round pipe. 2 2/3 x 1/2 in., 3 x 1 in. and 5 x 1 in. corrugations													
Pipe	Pipe Specified Dimensions (in.) L Dimensions													
Dia. (in.)											Length (in.)			
12	.064	8	6	18	34	4:1	N/A	6:1	29					
15	.064	8	6	21	37	4:1	20	6:1	30	10:1	70			
18	.064	8	6	24	40	4:1	32	6:1	48	10:1	100			
21	.064	8	6	27	43	4:1	44	6:1	66	10:1	130			
24	.064	8	6	30	46	4:1	56	6:1	84	10:1	160			
30	.109	12	9	36	60	4:1	80	6:1	120	10:1	220			
36	.109	12	9	42	66	4:1	104	6:1	156	10:1	280			
42	.109	16	12	48	80	4:1	128	6:1	192					
48	.109	16	12	54	86	4:1	152	6:1	228					
54	.109	16	12	60	92	4:1	176	6:1	264					
60	.109	16	12	66	98	4:1	200	6:1	300					
66	0.109	16	12	72	104	4:1	224							
72	0.109	16	12	78	110	4:1	248							

Table 2.61

Dimensions of slope end sections for pipe arch. $2 \frac{2}{3} \times \frac{1}{2}$ in. corrugations

Pipe	Span x	Specified	r	Dimensi	ions (i	n.)		1	Dimens	ions		
Dia. (in.)	Rise (in.)	Thickness (in.)	A	Н	W	Overall Width	Slope	Length (in.)	Slope	Length	Slope	Length (in.)
15	17 x 13	.064	8	6	23	39	4:1	20	6:1	30	10:1	70
18	21 x 15	.064	8	6	27	43	4:1	20	6:1	30	10:1	70
21	24 x 18	.064	8	6	30	46	4:1	32	6:1	48	10:1	100
24	28 x 20	.064	8	6	34	50	4:1	40	6:1	60	10:1	120
30	35 x 24	.079	12	9	41	65	4:1	56	6:1	84	10:1	160
36	42 x 29	.109	12	9	48	72	4:1	76	6:1	114	10:1	210
42	49 x 33	.109	16	12	55	87	4:1	92	6:1	138		
48	57 x 38	.109	16	12	63	95	4:1	112	6:1	168		
54	64 x 43	.109	16	12	70	102	4:1	132	6:1	198		
60	71 x 47	.109	16	12	77	109	4:1	148	6:1	222		
72	83 x 57	.109	16	12	89	121	4:1	188	6:1	282		

Notes: 1. End sections available in galvanized steel or aluminized steel, Type 2.

2. Cross bars and parallel bars are 3 in. Schedule 40 galvanized pipe with flattened ends bent to match end section contour.

3. Edge of side wall to be rolled edges reinforced with a 7/16 in. diameter or #4 galvanized steel rod.

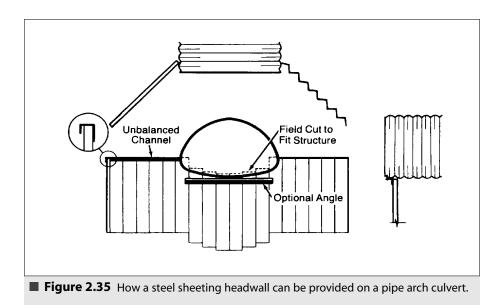
4. For attachment to structure use Type 1 for circular pipe through 24 in. diameter, use Type 2 for 30 in. and larger circular pipes and all arch pipes (see Figure 2.29).

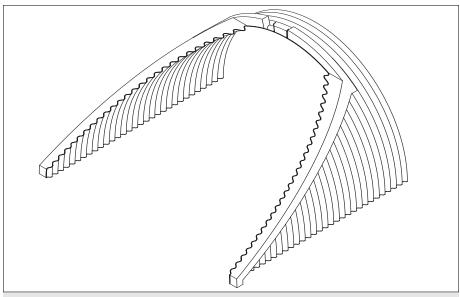
Table 2.62

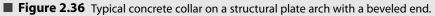
Dimensions of metal slope end sections for pipe arch.

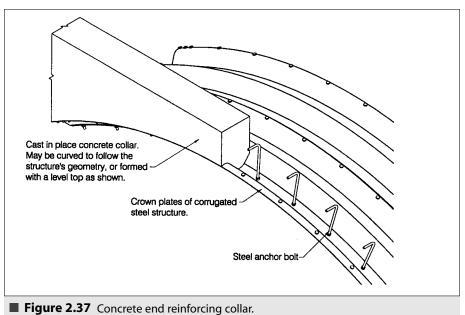
2 2 1	in.conugatio	115										
Equiv.		Specified		Dimens	ions (in	.)	L Dimensions					
Dia. (in.)	Span Rise (in.) (in.)	Thickness (in.)	A	н	w	Overall Width	Slope	Length (in.)	Slope	Length (in.)		
48	53 x 41	0.109	16	12	59	91	4:1	132	6:1	198		
54	60 x 48	0.109	16	12	66	98	4:1	152	6:1	228		
60	66 x 51	0.109	16	12	72	104	4:1	172	6:1	258		
66	73 x 55	0.109	16	12	79	111	4:1	188	6:1	282		
72	81 x 59	0.109	16	12	87	119	4:1	204	6:1	306		

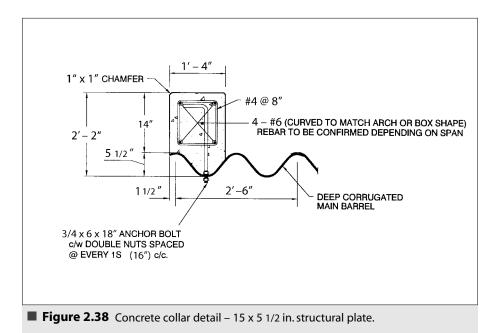
Notes: 1. End sections available in galvanized steel or aluminized steel, Type 2.


 Cross bars and parallel bars are 3 in. Schedule 40 galvanized pipe with flattened ends bent to match end section contour.


3. Edge of side wall to be rolled edges reinforced with a 7/16 in. diameter or #4 galvanized steel rod.


4. For attachment to structure use Type 2 (see Figure 2.29).


- 3. Other Protection. The slope at the end of a culvert (mitered or square cut) can be protected economically against erosion by riprap, gabions and other means. Stone riprap may be sealed by portland cement grout or asphaltic concrete.
- 4. Skews and Bevels. Skew and bevel ends may be ordered to fit local conditions, or may consist of a standard design as shown in Figures 2.36, 2.37 and 2.38. Details and essential considerations are discussed in Chapter 8, Special Design.
- 5. Steel Sheeting. One practical form of end protection consists of driving corrugated steel sheeting as a cutoff wall and low height headwall or endwall. It is cut to receive the last section of the culvert barrel, and capped at about mid-diameter with an unbalanced steel channel, as shown in Figure 2.35. This type of end finish is particularly appropriate for large culverts which may have the ends beveled or step beveled. Length of the sheeting below the flow line should be one-half to one diameter of the culvert, with a minimum of 3 feet.



BIBLIOGRAPHY

AASHTO, Guide to Standardized Highway Drainage Products, AASHTO-AGC-ARTBA Joint Committee Task Force 13, American Association of State Highway and Transportation Officials, 444 N. Capitol St., N.W., Ste. 249, Washington, D.C. 20001, 2000.

AASHTO, Roadside Design Guide, American Association of State Highway and Transportation Officials, 444 N. Capitol St., N.W., Ste. 249, Washington, D.C. 20001, 1996.

AASHTO, "Standard Specification for Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains," M 36, Standard Specifications for Transportation Materials and Methods of Sampling and Testing, American Association of State Highway and Transportation Officials, 444 N. Capitol St., N.W., Ste. 249, Washington, D.C. 20001.

AASHTO, "Standard Specification for Corrugated Steel Structural Plate, Zinc Coated, for Field-Bolted Pipe, Pipe Arches, and Arches," M I67, Standard Specifications for Transportation Materials and Methods of Sampling and Testing, American Association of State Highway and Transportation Officials, 444 N. Capitol St., N.W., Ste. 249, Washington, D.C. 20001.

AASHTO, "Standard Specifications for Highway Bridges," Section 12 and 26, 17th Edition, 2002, American Association of State Highway and Transportation Officials, 444 N. Capitol St., N.W., Ste. 249, Washington, D.C. 20001.

ASTM, "Standard Specification for Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains," A 760/A 760M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Specification for Corrugated Steel Structural Plate, Zinc Coated, for Field-Bolted Pipe, Pipe Arches, and Arches," A 761/A 761M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Specification for Corrugated Steel Pipe, Polymer Precoated for Sewers and Drains," A 762/A 762M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Practice for Structural design of Corrugated Steel Pipe, Pipe Arches, and Arches for Storm and Sanitary Sewers and Other Buried Applications," A 796/A 796M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Practice for Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications," A 798/A 798M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Practice for Installing Corrugated Steel Structural Plate Pipe for Sewers and Other Applications," A 807/A 807M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Practice for Life-Cycle Cost Analysis of Corrugated Steel Pipe Used for Culverts, Storm Sewers, and Other Buried Applications," A 930, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Specification for Corrugated Steel Box Culverts," A 964/A 964M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

ASTM, "Standard Practice for Structural Design of Reinforcements for Fittings in Factory-Made Corrugated Steel Pipe for Sewers and Other Applications," A 998/A 998M, Annual Book of Standards, Vol. 01.06, American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

"Sectional Properties of Corrugated Steel Sheets." 1960, American Iron and Steel Institute, 1101 17th Street N.W., 13th Floor, Washington, D.C. 20036-4700.

Arrand, Dr. C.O.D., "A Study of the Properties of Corrugated Metal Pipe Joints Subjected to Compression and Bending," Report No. EES 279-1. Ohio Department of Highways and U.S. Bureau of Public Roads, Ohio State University Engineering Experimental Station, Columbus, OH 43210.

Handbook of Steel Drainage & Highway Construction Products, 5th Edition, American Iron and Steel Institute, 1101 17th Street N.W., 13th floor, Washington, D.C. 20036-4700.

Handbook of Steel Drainage & Highway Construction Products, 2nd Edition, Corrugated Steel Pipe Institute, 652 Bishop Street North, Unit 2A, Cambridge, Ontario, Canada N3H 4V6.

Modern Sewer Design, 4th Edition, American Iron and Steel Institute, 1101 17th Street N.W., 13th floor, Washington, D.C. 20036-4700.

"Safety Treatment of Roadside Parallel-Drainage Structures," Research Report 280-2F on Research Study No. 2-8-79-280, Safe End Treatment for Roadside Culverts, Texas Transportation Institute, Texas A & M University, College Station, Texas.

"Safety Treatment of Roadside Cross-Drainage Structures," Report 280-1 on Research Study No. 2-8-79-280. Safe End Treatment for Roadside Culverts, Texas Transportation Institute, Texas A & M University, College Station, Texas.

Deep corrugated structural plate arch during high flow.